Holooly Plus Logo

Question 21.6: Calculating K and ΔG° from Ecell° Problem Silver occurs in t......

Calculating K and ΔG° from E^\circ _{\text{cell}}

Problem Silver occurs in trace amounts in some ores of lead, and lead can displace silver from solution:

           Pb(s)  +  2Ag^+(aq)  ⟶  Pb^{2+}(aq)  +  2Ag(s)

As a consequence, silver is a valuable byproduct in the industrial extraction of lead from its ores. Calculate K and ΔG° at 298.15 K for this reaction.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We divide the spontaneous redox reaction into half-reactions and use values from Appendix D to calculate E^\circ_{\text{cell}}. Then, we substitute this result into Equations 21.7 and 21.8 to find K and into Equation 21.6 to find ΔG°.

          E^\circ _{\text{cell}}  =  \frac{RT}{nF}  \ln  K     (21.7)
          E^\circ _{\text{cell}}  =  \frac{0.0592  V}{n}  \log  K \text{    or    } \log  K  =  \frac{nE^\circ _\text{cell}}{0.0592  V}       (\text{at }298.15  K)     (21.8)
          ΔG^\circ   =  −nFE^\circ _{\text{cell}}     (21.6)

Solution Writing the half-reactions with their E° values:
(1)     Ag^+(aq)  +  e^−  ⟶  Ag(s)               E^\circ =  0.80  V
(2)     Pb^{2+}(aq)  +  2e^−  ⟶  Pb(s)              E^\circ =  −0.13  V
Calculating E^\circ_{\text{cell}}: We double half-reaction (1) to obtain a gain of 2 mol of electrons, reverse (2) since this is the oxidation half-reaction, add the half-reactions, and subtract E^\circ_{\text{lead}} from E^\circ_{\text{silver}}:

    2Ag^+(aq)  +  2e^−  ⟶  2Ag(s)                    E^\circ =  0.80  V
         Pb(s)  ⟶  Pb^{2+}(aq)  +  2e^−                     E^\circ =  −0.13  V

  \overline{Pb(s)  +  2Ag^+(aq)  ⟶  Pb^{2+}(aq)  +  2Ag(s)             E^\circ_{\text{cell}}  =  0.80  V  −  (−0.13  V)  =  0.93  V}

Calculating K with Equations 21.7 and 21.8: The adjusted half-reactions show that 2 mol of e^− are transferred per mole of reaction as written, so n = 2. Then, performing the substitutions for R and F that we just discussed, changing to common logarithms, and running the cell at 25°C (298.15 K), we have

E^\circ_{\text{cell}}  =  \frac{RT}{nF}  \ln  K  =  \frac{0.0592  V}{n}  \log  K  =  \frac{0.0592  V}{2}  \log  K  =  0.93  V

So,                 \log  K  = \frac{0.93  V  ×  2}{0.0592  V}  =  31.42\text{      and      }K  =  10^{31.42}  =  2.6×10^{31}

Calculating ΔG° (Equation 21.6):

             ΔG^\circ =  −nFE^\circ_{\text{cell}}  =  −\frac{2\text{ mol}  e^−}{\text{mol rxn}}  ×  \frac{96.5  kJ}{V·\text{mol }e^−}  ×  0.93  V  =  −1.8×10^2  \text{kJ/mol rxn}

Check The three variables are consistent with the reaction being spontaneous at standard-state conditions: E^\circ_{\text{cell}}  >  0,  ΔG°  <  0, and K > 1. Be sure to round and check the order of magnitude: to find ΔG°, for instance, ΔG° ≈ −2 × 100 × 1 = −200, so the overall math seems right. Another check would be to obtain ΔG° directly from its relation with K:

             ΔG^\circ =  −RT  \ln  K  =  −8.314\text{ J/mol rxn}·K  ×  298.15  K  ×  \ln  (2.6×10^{31})
             =  −1.8×10^5\text{ J/mol rxn}  =  −1.8×10^2\text{ kJ/mol rxn}

Related Answered Questions