Holooly Plus Logo

Question 19.14: Calculating the Effect of Complex-Ion Formation on Solubilit......

Calculating the Effect of Complex-Ion Formation on Solubility

Problem In black-and-white film developing (see photo (Fig 19.14)), excess AgBr is removed from a film negative with “hypo,” an aqueous solution of sodium thiosulfate (Na_2S_2O_3), which causes the formation of the complex ion Ag(S_2O_3)_2^{3−}. Calculate the solubility of AgBr in (a) H_2O; (b) 1.0 M hypo. K_f of Ag(S_2O_3)_2^{3−} is 4.7×10^{13}, and K_{sp} of AgBr is 5.0×10^{−13}.

f19.14
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan (a) After writing the dissolution equation and the ion-product expression, we use the given K_{sp} to solve for S, the molar solubility of AgBr. (b) In hypo, Ag^+ forms a complex ion with S_2O_3^{2−}, which shifts the equilibrium and dissolves more AgBr. We write the complex-ion equation and add it to the equation for dissolving AgBr to obtain the overall equation for dissolving AgBr in hypo. We multiply K_{sp} by K_f to find K_{\text{overall}}. To find the solubility of AgBr in hypo, we set up a reaction table, with S  =  [Ag(S_2O_3)_2^{3−}], substitute into the expression for K_{\text{overall}}, and solve for S.

Solution (a) Solubility in water. Writing the equation for the saturated solution and the ion-product expression:
            AgBr(s)  \xrightleftharpoons[]{}  Ag^+(aq)  +  Br^−(aq)              K_{sp}  =  [Ag^+][Br^−]
Solving for solubility (S) directly from the equation: We know that
            S  =  [AgBr]_{\text{dissolved}}  =  [Ag^+]  =  [Br^−]
Thus,
            K_{sp}  =  [Ag^+][Br^−] =  S^2  =  5.0×10^{−13}
so
            S  =  7.1×10^{−7}  M
(b) Solubility in 1.0 M hypo. Writing the overall equation:

                      AgBr(s)  \xrightleftharpoons[]{}  \cancel{Ag^+(aq)}  +  Br^−(aq)
            \cancel{Ag^+(aq)}  +  2S_2O_3^{2−}(aq)  \xrightleftharpoons[]{}  Ag(S_2O_3)_2^{3−}(aq)
           \overline{AgBr(s)  +  2S_2O_3^{2−}(aq)  \xrightleftharpoons[]{}  Ag(S_2O_3)_2^{3−}(aq)  +  Br^−(aq)}

Calculating K_{\text{overall}}:
          K_{\text{overall}}  =  \frac{[Ag(S_2O_3)_2^{3−}][Br^−]}{[S_2O_3^{2−}]^2}  =  K_{sp}  ×  K_f  =  (5.0×10^{−13})(4.7×10^{13})  =  24
Setting up a reaction table (Table 1), with S  =  [AgBr]_{\text{dissolved}}  =  [Ag(S_2O_3)_2^{3−}]:

Substituting the values into the expression for K_{\text{overall}} and solving for S:
          K_{\text{overall}}  =  \frac{[Ag(S_2O_3)_2^{3−}][Br^−]}{[S_2O_3^{2−}]^2}  =  \frac{S^2}{(1.0  M  −  2S)^2}  =  24
Taking the square root of both sides gives

          \frac{S}{1.0  M  −  2S}  =  \sqrt{24}  =  4.9\text{      so    } S  =  4.9  M  −  9.8S \text{        and         }10.8S  =  4.9  M
          [Ag(S_2O_3)_2^{3−}]  =  S  =  0.45  M

Check (a) From the number of ions in the formula of AgBr, we know that S  =  \sqrt{K_{sp}}, so the order of magnitude seems right: ∼ \sqrt{10^{−14}}  ≈  10^{−7}. (b) The K_{\text{overall}} seems correct: the exponents cancel, and 5 × 5 = 25. Most importantly, the answer makes sense because the photographic process requires the remaining AgBr to be washed off the film and the large K_{\text{overall}} confirms that. We can check S by rounding and working backward to find K_{\text{overall}}: from the reaction table, we find that
          [(S_2O_3)^{2−}]  =  1.0  M  −  2S  =  1.0  M  −  2(0.45  M)  =  1.0  M  −  0.90  M  =  0.1  M
so K_{\text{overall}}  ≈  (0.45)^2/(0.1)^2  =  20, within rounding of the calculated value.

Table 1

Concentration (M)  \mathbf{AgBr(s)  +  2S_2O_3^{2−}(aq)  \xrightleftharpoons[]{}  Ag(S_2O_3)_2^{3−}(aq)  +  Br^−(aq)}
Initial —                              1.0                                 0                                0
Change —                            –2S                                +S                               +S
Equilibrium —                        1.0 – 2S                                S                                S

Related Answered Questions