Question 9.6.1: Calculation of a Heating Value A natural gas contains 85% me......

Calculation of a Heating Value
A natural gas contains 85% methane and 15% ethane by volume. The heats of combustion of methane and ethane at 25°C and 1 atm with water vapor as the assumed product are given below:

CH_{4}(g) + 2O_{2}(g) → CO_{2}(g) + 2H_{2}O(v):   Δ\hat{H}^{°}_{c} = – 802  kJ/mol \\ C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) → 2CO_{2}(v) + 3H_{2}O(v):   Δ\hat{H}^{°}_{c} = – 1428  kJ/mol

Calculate the higher heating value (kJ/g) of the natural gas.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since the heating value per unit mass of the fuel is desired, we will first calculate the composition on a mass basis:

1  mol  fuel \Longrightarrow \begin{matrix} 0.85  mol  CH_{4} \Longrightarrow \\ 0.15  mol  C_{2}H_{6} \Longrightarrow \end{matrix} \begin{matrix} 13.6  g  CH_{4} \\4.5  g  C_{2}H_{6}\\\hline 18.1  g  total \end{matrix}

Thus            x_{CH_{4}} = 13.6  g  CH_{4}/18.1  g = 0.751  g  CH_{4}/g  fuel

x_{C_{2}H_{6}} = 1  –  x_{CH_{4}} = 0.249  g  C_{2}H_{6}/g  fuel

The higher heating values of the components are calculated from the given heats of combustion (which are the negatives of the lower heating values) as follows:

(HHV)_{CH_{4}} = (LHV)_{CH_{4}}+n_{H_{2}O}(\Delta \hat{H}_{v})_{H_{2}O} \\ = \left[802 \frac{kJ}{mol  CH_{4}} + \frac{2  mol  H_{2}O}{mol  CH_{4}} \left(44.013 \frac{kJ}{mol  H_{2}O} \right) \right] \frac{1  mol}{16.0  g  CH_{4}} \\ = 55.6  kJ/g \\ (HHV)_{C_{2}H_{6}} = \left[1428 \frac{kJ}{mol  C_{2}H_{6}} + \frac{3  mol  H_{2}O}{mol  C_{2}H_{6}} \left(44.013 \frac{kJ}{mol  H_{2}O} \right) \right] \frac{1  mol}{30.0  g  C_{2}H_{6}} \\ = 52.0  kJ/g

The higher heating value of the mixture is from Equation 9.6-3:

HV= \sum{x_{i}(HV)_{i}}               (9.6-3)

HHV=x_{CH_{4}}(HHV)_{CH_{4}} + x_{C_{2}H_{6}}(HHV)_{C_{2}H_{6}} \\ =[(0.751)(55.6) + (0.249)(52.0)]  kJ/g =\boxed{54.7  kJ/g}

Related Answered Questions