Calculation of the Time Taken to Boil an Egg
An egg with mean diameter of 40mm and initially at 20ยฐ๐ถ is placed in a boiling water pan for 4 minutes and found to be boiled to the consumer’s taste. For how long should a similar egg for the same consumer be boiled when taken from a refrigerator at 5ยฐ๐ถ. Take the following properties for eggs:
๐ = 10๐ค/๐ยฐ๐ถ; ๐ = 1200๐๐/๐ยณ; c_{p}\,\, = 2๐๐/๐๐ยฐ๐ถ; and
โ (heat transfer coefficient) = 100๐ค/ m^{2^{\circ} } ๐ถ.
Use lumped capacitance theory.
Given: r=\frac{40}{2}=20m m=0.02m;\;T_{o}=20^{\circ}c;\;T_{\infty}=100^{\circ}C;\;\tau=4\times60=240s;
k=10w/m^{\circ}C;~~\rho=1200k g/m^{3};~c_{p}=2k j/k g^{\circ}C;h=100w/m^{2^{\circ}}C;
For using the lumped capacitance theory, the required condition ๐ต๐ โช 0.1 must be valid.
B i={\frac{h\,L}{k}}\,, where L is the characteristic length which is given by,
L=\frac{V}{A_{s}}=\frac{r}{3}=\frac{0.02}{3}m
โดย B i=\frac{h\,L}{k}=\frac{h\times0.02}{k\times3}=\frac{100\times0.02}{10\times3}=0.067
As ๐ต๐ โช 0.1 , we can use the lumped capacitance system.
The temperature variation with time is given by:
\frac{T(t)-T_{\infty}}{T_{o}-T_{\infty}}=e^{-B i\times F o}
F_{O}=\frac{k}{\rho c_{P}L^{2}}\cdot\tau=\frac{10}{1200\times2\times10^{3}\times\left(\frac{0.02}{3}\right)^{2}}\times240=22.5
B i\times F o=0.067\times22.5=1.5075
{\frac{T(t)-100}{20-100}}=e^{-1.5075}
T(t)=100-80\,e^{-1.5075}=82.3^{\circ}C\simeq82^{\circ}C
Now, let us find ๐ when the given data is :T_{o}=5^{\circ}C;\;T_{\infty}=100^{\circ}C and T(t)=82^{\circ}C.
\frac{82-100}{5-100}=e^{-B i\times F o}
F o=\frac{k}{\rho c_{P}L^{2}}\cdot\tau=\frac{10}{1200\times2\times10^{3}\times\left(\frac{0.02}{3}\right)^{2}}\cdot\tau=0.09375\,\,\tau
B i\times F o=0.067 \times 0.09375 \ \tau = 6.281 \times 10^{-3} \tau = 0.00628 \ \tau
0.1895=e^{-0.00628\,\tau}
-0.00628 \ \tau \ \ln e=\ln0.1895
\tau=\frac{ln \ 0.1895}{-0.000628}=264.9~s=4.414\;m i n u t e s