Question 7.13: Calculation of the Time Taken to Boil an Egg An egg with mea......

Calculation of the Time Taken to Boil an Egg
An egg with mean diameter of 40mm and initially at 20ยฐ๐ถ is placed in a boiling water pan for 4 minutes and found to be boiled to the consumer’s taste. For how long should a similar egg for the same consumer be boiled when taken from a refrigerator at 5ยฐ๐ถ. Take the following properties for eggs:
๐‘˜ = 10๐‘ค/๐‘šยฐ๐ถ; ๐œŒ = 1200๐‘˜๐‘”/๐‘šยณ; c_{p}\,\, = 2๐‘˜๐‘—/๐‘˜๐‘”ยฐ๐ถ; and
โ„Ž (heat transfer coefficient) = 100๐‘ค/ m^{2^{\circ} } ๐ถ.
Use lumped capacitance theory.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given: r=\frac{40}{2}=20m m=0.02m;\;T_{o}=20^{\circ}c;\;T_{\infty}=100^{\circ}C;\;\tau=4\times60=240s;

 

k=10w/m^{\circ}C;~~\rho=1200k g/m^{3};~c_{p}=2k j/k g^{\circ}C;h=100w/m^{2^{\circ}}C;

 

For using the lumped capacitance theory, the required condition ๐ต๐‘– โ‰ช 0.1 must be valid.

 

B i={\frac{h\,L}{k}}\,, where L is the characteristic length which is given by,

 

L=\frac{V}{A_{s}}=\frac{r}{3}=\frac{0.02}{3}m

 

โˆดย  B i=\frac{h\,L}{k}=\frac{h\times0.02}{k\times3}=\frac{100\times0.02}{10\times3}=0.067

 

As ๐ต๐‘– โ‰ช 0.1 , we can use the lumped capacitance system.
The temperature variation with time is given by:

 

\frac{T(t)-T_{\infty}}{T_{o}-T_{\infty}}=e^{-B i\times F o}

 

F_{O}=\frac{k}{\rho c_{P}L^{2}}\cdot\tau=\frac{10}{1200\times2\times10^{3}\times\left(\frac{0.02}{3}\right)^{2}}\times240=22.5

 

B i\times F o=0.067\times22.5=1.5075

 

{\frac{T(t)-100}{20-100}}=e^{-1.5075}

 

T(t)=100-80\,e^{-1.5075}=82.3^{\circ}C\simeq82^{\circ}C

 

Now, let us find ๐œ when the given data is :T_{o}=5^{\circ}C;\;T_{\infty}=100^{\circ}C and T(t)=82^{\circ}C.

 

\frac{82-100}{5-100}=e^{-B i\times F o}

 

F o=\frac{k}{\rho c_{P}L^{2}}\cdot\tau=\frac{10}{1200\times2\times10^{3}\times\left(\frac{0.02}{3}\right)^{2}}\cdot\tau=0.09375\,\,\tau

 

B i\times F o=0.067 \times 0.09375 \ \tau = 6.281 \times 10^{-3} \tau = 0.00628 \ \tau

 

0.1895=e^{-0.00628\,\tau}

 

-0.00628 \ \tau \ \ln e=\ln0.1895

 

\tau=\frac{ln \ 0.1895}{-0.000628}=264.9~s=4.414\;m i n u t e s

Related Answered Questions