Chemical reactions can be used to produce flames for heating. The nonnuclear reaction with the highest attainable flame temperature (approximately 6000°C, about the surface temperature of the sun) is that between hydrogen and fluorine:
H_{2}(g) + F_{2}(g) → 2\ HF(g)Use the molar bond enthalpies in Table 14.5 to estimate the value of \Delta H^{\circ}_{rxn} for this equation. Compare this to the value calculated using the molar enthalpies of formation in Table 14.3.
TABLE 14.3 standard enthalpies of formation, ΔH^{\circ}_{f}, for various substances a 25°c | |||||
Substance | Formula | ΔH^{\circ}_{f}/kJ\cdot mol^{-1} | Substance | Formula | ΔH^{\circ}_{f}/kJ\cdot mol^{-1} |
aluminum oxide | Al_{2}O_{3}(s) | -1675.7 | hydrogen fluoride | HF(g) | -273.3 |
ammonia | NH_{3}(g) | -45.9 | hydrogen iodide | HI(g) | +26.5 |
benzene | C_{6}H_{6}(l) | +49.1 | hydrogen peroxide | H_{2}O_{2}(l) | -187.8 |
benzoic acid | C_{6}H_{5}COOH(s) | -385.2 | iodine vapor | I_{2}(g) | +62.4 |
bromine vapor | Br_{2}(g) | +30.9 | magnesium carbonate | MgCO_{3}(s) | -1095.8 |
butane | C_{4}H_{10}(g) | -125.7 | magnesium oxide | MgO(s) | -601.6 |
calcium carbonate | CaCO_{3}(s) | -1207.6 | magnesium sulfide | MgS(s) | -346.0 |
carbon (diamond) | C(s) | +1.897 | methane | CH_{4}(g) | -74.6 |
carbon (graphite) | C(s) | 0 | methanol (methyl alcohol) | CH_{3}OH(l) CH_{3}OH(g) |
-239.2 -201.0 |
carbon (buckminster fullerene) | C_{60}(s) | +2327.0 | methyl chloride | CH_{3}Cl(g) | -81.9 |
carbon dioxide | CO_{2}(g) | -393.5 | nitrogen dioxide | NO_{2}(g) | +33.2 |
carbon monoxide | CO(g) | -110.5 | nitrogen oxide | NO(g) | +91.3 |
carbon tetrachloride | CCl_{4}(l) CCl_{4}(g) |
-128.2 -95.7 |
dinitrogen tetroxide | N_{2}O_{4}(g) N_{2}O_{4}(l) |
+11.1 -19.5 |
chromium (III) oxide | Cr_{2}O_{3}(s) | -1139.7 | octane | C_{8}H_{18}(l) | -250.1 |
cyclohexane | C_{6}H_{12}(l) | -156.4 | pentane | C_{5}H_{12}(l) | -173.5 |
ethane | C_{2}H_{6}(g) | -84.0 | propane | C_{3}H_{8}(g) | -103.8 |
ethanol (ethyl alcohol) | CH_{3}CH_{2}OH(l) | -277.6 | sodium carbonate | Na_{2}CO_{3}(s) | -1130.7 |
ethene (ethylene) | C_{2}H_{4}(g) | +52.4 | sodium oxide | Na_{2}O(s) | -414.2 |
ethyne (acetylene) | C_{2}H_{2}(g) | +227.4 | sucrose | C_{12}H_{22}O_{11}(s) | -2226.1 |
freon-12 (dichloro difluoromethane) | CF_{2}Cl_{2}(g) | -477.4 | sulfur dioxide | SO_{2}(g) | -296.8 |
glucose | C_{6}H_{12}O_{6}(s) | -1273.3 | sulfur trioxide | SO_{3}(g) | -395.7 |
hexane | C_{6}H_{14}(l) | -198.7 | tin(IV) oxide | SnO_{2}(s) | -577.6 |
hydrazine | N_{2}H_{4}(l) N_{2}H_{4}(g) |
+50.6 +95.4 |
water | H_{2}O(l) H_{2}O(g) |
-285.8 -241.8 |
hydrogen bromide | HBr(g) | -36.3 | |||
hydrogen chloride | HCl(g) | -92.3 | |||
Data from CRC Handbook of Chemistry and Physics, 86th Ed., Ed. David R. Lide, CRC Press, 2005–2006. (More thermodynamic data are given in Appendix D.) |
TABLE 14.5 average molar bond enthalpies | |||
Bond | Molar bond enthalpy, H_{bond}/kJ\cdot mol^{-1} | Bond | Molar bond enthalpy, H_{bond}/kJ\cdot mol^{-1} |
O–H | 464 | C≡N | 890 |
O–O | 142 | N–H | 390 |
C–O | 351 | N–N | 159 |
O=O | 502 | N=N | 418 |
C=O | 730 | N≡N | 945 |
C–C | 347 | F–F | 155 |
C=C | 615 | Cl–Cl | 243 |
C≡C | 811 | Br–Br | 192 |
C–H | 414 | H–H | 435 |
C–F | 439 | H–F | 565 |
C–Cl | 331 | H–Cl | 431 |
C–Br | 276 | H–Br | 368 |
C–N | 293 | H–S | 364 |
C=N | 615 |
The reaction involves the breaking of one hydrogen–hydrogen bond and one fluorine–fluorine bond and the formation of two hydrogen– fluorine bonds. Thus,
ΔH^{\circ}_{rxn} ≈ H_{bond}(H–H) + H_{bond} (F–F) – 2\ H_{bond} (H–F)\\= (435\ kJ·mol^{–1}) + (155\ kJ·mol^{–1}) – (2)(565\ kJ·mol^{–1}) \\ = – 540\ kJ·mol^{–1}Because this reaction is the formation reaction for two moles of HF(g) from its constituent elements, the experimentally determined value of \Delta H^{\circ}_{rxn} is twice the molar enthalpy of formation of HF(g) listed in Table 14.3, or – 546\ kJ·mol^{–1}, a value with less than a 2% difference from that which we found using average molar bond enthalpies.