Holooly Plus Logo

Question 8.6: Collision in a horizontal plane Figure 8.14a shows two battl......

Collision in a horizontal plane

Figure 8.14a shows two battling robots on a frictionless surface. Robot A, with mass 20 \mathrm{~kg}, initially moves at 2.0 \mathrm{~m} / \mathrm{s} parallel to the x-axis. It collides with robot B, which has mass 12 \mathrm{~kg} and is initially at rest. After the collision, robot A moves at 1.0 \mathrm{~m} / \mathrm{s} in a direction that makes an angle \alpha=30^{\circ} with its initial direction (Figure 8.14b). What is the final velocity of robot B ?

8.14
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

IDENTIFY and SET UP There are no horizontal external forces, so the x – and y-components of the total momentum of the system are conserved. Hence the sum of the x-components of momentum before the collision (subscript 1) must equal the sum after the collision (subscript 2), and similarly for the sums of the y-components. Our target variable is \overrightarrow{\boldsymbol{v}}_{B 2}, the final velocity of robot B.

EXECUTE The momentum-conservation equations and their solutions for v_{B 2 x} and v_{B 2 y} are

\begin{aligned} m_{A} v_{A 1 x}+m_{B} v_{B 1 x} & =m_{A} v_{A 2 x}+m_{B} v_{B 2 x} \\ v_{B 2 x} & =\frac{m_{A} v_{A 1 x}+m_{B} v_{B 1 x}-m_{A} v_{A 2 x}}{m_{B}} \\ & =\frac{\left[\begin{array}{c} (20 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})+(12 \mathrm{~kg})(0) \\ -(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right) \end{array}\right]}{12 \mathrm{~kg}}=1.89 \mathrm{~m} / \mathrm{s} \\ m_{A} v_{A 1 y}+m_{B} v_{B 1 y} & =m_{A} v_{A 2 y}+m_{B} v_{B 2 y} \\ v_{B 2 y} & =\frac{m_{A} v_{A 1 y}+m_{B} v_{B 1 y}-m_{A} v_{A 2 y}}{m_{B}} \\ & =\frac{\left[\begin{array}{l} (20 \mathrm{~kg})(0)+(12 \mathrm{~kg})(0) \\ -(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right) \end{array}\right]}{12 \mathrm{~kg}}=-0.83 \mathrm{~m} / \mathrm{s} \end{aligned}

Figure 8.14 \mathrm{~b} shows the motion of robot B after the collision. The magnitude of \overrightarrow{\boldsymbol{v}}_{B 2} is

v_{B 2}=\sqrt{(1.89 \mathrm{~m} / \mathrm{s})^{2}+(-0.83 \mathrm{~m} / \mathrm{s})^{2}}=2.1 \mathrm{~m} / \mathrm{s}

and the angle of its direction from the positive x-axis is

\beta=\arctan \frac{-0.83 \mathrm{~m} / \mathrm{s}}{1.89 \mathrm{~m} / \mathrm{s}}=-24^{\circ}

EVALUATE Let’s confirm that the components of total momentum before and after the collision are equal. Initially robot A has x-momentum m_{A} v_{A 1 x}=(20 \mathrm{~kg})(2.0 \mathrm{~m} / \mathrm{s})=40 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} and zero y-momentum; robot B has zero momentum. Afterward, the momentum components are m_{A} v_{A 2 x}=(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right)=17 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} and m_{B} v_{B 2 x}= (12 \mathrm{~kg})(1.89 \mathrm{~m} / \mathrm{s})=23 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}; the total x-momentum is 40 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}, the same as before the collision. The final y-components are m_{A} v_{A 2 y}=(20 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right)=10 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s} and m_{B} v_{B 2 y}= (12 \mathrm{~kg})(-0.83 \mathrm{~m} / \mathrm{s})=-10 \mathrm{~kg} \cdot \mathrm{m} / \mathrm{s}; the total y-component of momentum is zero, as before the collision.

KEYCONCEPT In problems that involve a two-dimensional collision, write separate conservation equations for the x-component and y-component of total momentum.

Related Answered Questions