Compare estimates the diffusion coefficient of an ethanol-water mixture at 10 C (283 K), under conditions that (1) ethanol is the solute and water is the solvent and (2) water is the solute and ethanol is the solvent. Ethanol has the molecular formula C_{2}H_{5}OH and a molecular weight of 46 g/gmole, and water (H_{2}O) has a molecular weight of 18 g/gmole. At 10 C, the liquid viscosity of water is 1.306\times10^{-3}\,\mathrm{Pa}\cdot{\mathrm{s}}\ (1.306\,\mathrm{cP}). and the liquid viscosity of ethanol is 1.394\times10^{-3}\,\mathrm{Pa}\cdot{\mathrm{s}}\ (1.394\,\mathrm{cP}).
The Wilke–Chang correlation will be used for estimation of the diffusion coefficients. This correlation will require the molar volume of each species at its normal boiling point. From Table 24.4, the molecular volume of water is 18.9 cm³/gmole. From Table 24.5, using the group contribution method, the molar volume of ethanol (EtOH) is estimated as
V_{\mathrm{EtOH}}=2\cdot V_{C}+1\cdot V_{O}+6\cdot V_{H}=2(14.8)+1(7.4)=59.2\,\mathrm{cm}^{2}/\mathrm{gmole}
For the ethanol-water system, let A ethanol and B water. First, if ethanol is the solute, V_{A}=59.2\,\mathrm{cm}^{3}/\mathrm{gmole}, and if water is the solvent, \Phi_{B}=2.6\mathrm{~and~}\mu_{B}=1.394\mathrm{~cP} Consequently, by equation (24-52)
\frac{D_{A B}\,\mu_{B}}{T}=\frac{7.4\times10^{-8}(\Phi_{B}M_{B})^{1/2}}{V_{A}^{0.6}} (24-52)
D_{A B}={\frac{T}{\mu_{B}}}{\frac{7.4\times10^{-8}(\Phi_{B}M_{B})^{1/2}}{V_{A}^{0.6}}}={\frac{(283)}{(1.394)}}{\frac{7.4\times10^{-8}(2.6\cdot18)^{1/2}}{(59.2)^{0.6}}}=8.9\times10^{-6}\,\mathrm{cm^{2}/s}
For comparison, from Appendix J, Table J.2, D_{A B}=8.3\times10^{-6}\,\mathrm{cm}^{2}/s, which is within 10% of the estimated value.
Now consider that water is the solute with V_{B}=18.9\,\mathrm{cm}^{3}/\mathrm{gmole}, and ethanol is the solvent with \Phi_{A}=1.5\;\mathrm{and}\;\mu_{A}=1.306\ cP. In context to equation (24-52), D_{A B} is now given by
D_{B A}=\frac{T}{\mu_{A}}\frac{7.4\times10^{-8}(\Phi_{A}M_{A})^{1/2}}{V_{B}^{0.6}}=\frac{(283)}{(1.306)}\frac{7.4\times10^{-8}(1.5\cdot46)^{1/2}}{(18.9)^{0.6}}=2.28\times10^{-5}\,\mathrm{cm^{2}/s}
This result shows that D_{A B}\neq D_{B}, for liquids.
Table 24.4 Molecular volumes at normal boiling point for some commonly encountered compounds
\begin{matrix} \\ \text{Compound} \end{matrix} | \begin{matrix} \text{Molecular Volume,} \\ V_{A}\,({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} | \begin{matrix} \\ \text{Compound} \end{matrix} | \begin{matrix} \text{Molecular Volume,} \\ V_{A}\,({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} |
Hydrogen, H_{2} | 14.3 | Nitric oxide, NO | 23.6 |
Oxygen, O_{2} | 25.6 | Nitrous oxide, N_{2}O | 36.4 |
Nitrogen, N_{2} | 31.2 | Ammonia, NH_{3} | 25.8 |
Air | 29.9 | Water, H_{2}O | 18.9 |
Carbon monoxide, CO | 30.7 | Hydrogen sulfide, H_{2}S | 32.9 |
Carbon dioxide, CO_{2} | 34.0 | Bromine, Br_{2} | 53.2 |
Carbonyl sulfide, COS | 51.5 | Chlorine, Cl_{2} | 48.4 |
Sulfur dioxide, SO_{2} | 44.8 | Iodine, I_{2} | 71.5 |
Table 24.5 Atomic volume increments for estimation of molecular volumes at the normal boiling point for simple substances^{15}
\begin{matrix} \\ \text{Element} \end{matrix} | \begin{matrix} \text{Atomic Volume} \\ ({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} | \begin{matrix} \\ \text{Element} \end{matrix} | \begin{matrix} \text{Atomic Volume} \\ ({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} |
Bromine | 27.0 | Oxygen, except as noted below | 7.4 |
Carbon | 14.8 | Oxygen, in methyl esters | 9.1 |
Chlorine | 21.6 | Oxygen, in methyl ethers | 9.9 |
Hydrogen | 3.7 | Oxygen, in higher ethers and other esters | 11.0 |
Iodine | 37.0 | ||
Nitrogen, double bond | 15.6 | Oxygen, in acids | 12.0 |
Nitrogen, in primary amines | 10.5 | Sulfur | 25.6 |
Nitrogen, in secondary amines | 12.0 |
Table J.2 Binary mass diffusivities in liquids^{† }
\begin{matrix} \\ \text{Solute A} \end{matrix} | \begin{matrix} \\ \text{Solute B} \end{matrix} | \begin{matrix} \text{Temperature} \\ (K) \end{matrix} | \begin{matrix} \text{Solute concentration} \\ (\mathrm{g}{\mathrm{~mol}}/\mathrm{L}{\mathrm{~or~kg~mol/m^{3}}}) \end{matrix} | \begin{matrix} \text{Diffusivity} (cm^{2}/s \times \\ 10^{5}\ \text{or}\ m^{2}/s \times 10^{9})\end{matrix} |
Chlorine | Water | 289 | 0.12 | 1.26 |
Hydrogen chloride | Water | 273 | 9 | 2.7 |
2 | 1.8 | |||
283 | 9 | 3.3 | ||
2.5 | 2.5 | |||
289 | 0.5 | 2.44 | ||
Ammonia | Water | 278 | 3.5 | 1.24 |
288 | 1.0 | 1.77 | ||
Carbon dioxide | Water | 283 | 0 | 1.46 |
293 | 0 | 1.77 | ||
Sodium chloride | Water | 291 | 0.05 | 1.26 |
0.2 | 1.21 | |||
1.0 | 1.24 | |||
3.0 | 1.36 | |||
5.4 | 1.54 | |||
Methanol | Water | 288 | 0 | 1.28 |
Acetic acid | Water | 285.5 | 1.0 | 0.82 |
0.0 | 0.91 | |||
291 | 1.0 | 0.96 | ||
Ethanol | Water | 283 | 3.75 | 0.50 |
0.05 | 0.83 | |||
289 | 2.0 | 0.90 | ||
n-Butanol | Water | 288 | 0 | 0.77 |
Carbon dioxide | Ethanol | 290 | 0 | 3.20 |
Chloroform | Ethanol | 293 | 2.0 | 1.25 |