Question 24.4: Compare estimates the diffusion coefficient of an ethanol-wa......

Compare estimates the diffusion coefficient of an ethanol-water mixture at 10 C (283 K), under conditions that (1) ethanol is the solute and water is the solvent and (2) water is the solute and ethanol is the solvent. Ethanol has the molecular formula C_{2}H_{5}OH and a molecular weight of 46 g/gmole, and water (H_{2}O) has a molecular weight of 18 g/gmole. At 10 C, the liquid viscosity of water is 1.306\times10^{-3}\,\mathrm{Pa}\cdot{\mathrm{s}}\ (1.306\,\mathrm{cP}). and the liquid viscosity of ethanol is 1.394\times10^{-3}\,\mathrm{Pa}\cdot{\mathrm{s}}\ (1.394\,\mathrm{cP}).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The Wilke–Chang correlation will be used for estimation of the diffusion coefficients. This correlation will require the molar volume of each species at its normal boiling point. From Table 24.4, the molecular volume of water is 18.9 cm³/gmole. From Table 24.5, using the group contribution method, the molar volume of ethanol (EtOH) is estimated as

V_{\mathrm{EtOH}}=2\cdot V_{C}+1\cdot V_{O}+6\cdot V_{H}=2(14.8)+1(7.4)=59.2\,\mathrm{cm}^{2}/\mathrm{gmole}

For the ethanol-water system, let A ethanol and B water. First, if ethanol is the solute, V_{A}=59.2\,\mathrm{cm}^{3}/\mathrm{gmole}, and if water is the solvent, \Phi_{B}=2.6\mathrm{~and~}\mu_{B}=1.394\mathrm{~cP} Consequently, by equation (24-52)

\frac{D_{A B}\,\mu_{B}}{T}=\frac{7.4\times10^{-8}(\Phi_{B}M_{B})^{1/2}}{V_{A}^{0.6}}            (24-52)

D_{A B}={\frac{T}{\mu_{B}}}{\frac{7.4\times10^{-8}(\Phi_{B}M_{B})^{1/2}}{V_{A}^{0.6}}}={\frac{(283)}{(1.394)}}{\frac{7.4\times10^{-8}(2.6\cdot18)^{1/2}}{(59.2)^{0.6}}}=8.9\times10^{-6}\,\mathrm{cm^{2}/s}

For comparison, from Appendix J, Table J.2, D_{A B}=8.3\times10^{-6}\,\mathrm{cm}^{2}/s, which is within 10% of the estimated value.

Now consider that water is the solute with V_{B}=18.9\,\mathrm{cm}^{3}/\mathrm{gmole}, and ethanol is the solvent with \Phi_{A}=1.5\;\mathrm{and}\;\mu_{A}=1.306\ cP.  In context to equation (24-52), D_{A B} is now given by

D_{B A}=\frac{T}{\mu_{A}}\frac{7.4\times10^{-8}(\Phi_{A}M_{A})^{1/2}}{V_{B}^{0.6}}=\frac{(283)}{(1.306)}\frac{7.4\times10^{-8}(1.5\cdot46)^{1/2}}{(18.9)^{0.6}}=2.28\times10^{-5}\,\mathrm{cm^{2}/s}

This result shows that D_{A B}\neq D_{B}, for liquids.

Table 24.4 Molecular volumes at normal boiling point for some commonly encountered compounds

\begin{matrix}  \\ \text{Compound} \end{matrix} \begin{matrix} \text{Molecular Volume,} \\ V_{A}\,({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} \begin{matrix}  \\ \text{Compound} \end{matrix} \begin{matrix} \text{Molecular Volume,} \\ V_{A}\,({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix}
Hydrogen, H_{2} 14.3 Nitric oxide, NO 23.6
Oxygen, O_{2} 25.6 Nitrous oxide, N_{2}O 36.4
Nitrogen, N_{2} 31.2 Ammonia, NH_{3} 25.8
Air 29.9 Water, H_{2}O 18.9
Carbon monoxide, CO 30.7 Hydrogen sulfide, H_{2}S 32.9
Carbon dioxide, CO_{2} 34.0 Bromine, Br_{2} 53.2
Carbonyl sulfide, COS 51.5 Chlorine, Cl_{2} 48.4
Sulfur dioxide, SO_{2} 44.8 Iodine, I_{2} 71.5

Table 24.5 Atomic volume increments for estimation of molecular volumes at the normal boiling point for simple substances^{15}

\begin{matrix}  \\ \text{Element} \end{matrix} \begin{matrix} \text{Atomic Volume} \\ ({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix} \begin{matrix}  \\ \text{Element} \end{matrix} \begin{matrix} \text{Atomic Volume} \\ ({\mathrm{cm}}^{3}/{\mathrm{gmole}}) \end{matrix}
Bromine 27.0 Oxygen, except as noted below 7.4
Carbon 14.8 Oxygen, in methyl esters 9.1
Chlorine 21.6 Oxygen, in methyl ethers 9.9
Hydrogen 3.7 Oxygen, in higher ethers and other esters 11.0
Iodine 37.0
Nitrogen, double bond 15.6 Oxygen, in acids 12.0
Nitrogen, in primary amines 10.5 Sulfur 25.6
Nitrogen, in secondary amines 12.0

Table J.2 Binary mass diffusivities in liquids^{† }

\begin{matrix}  \\ \text{Solute A} \end{matrix} \begin{matrix}  \\ \text{Solute B} \end{matrix} \begin{matrix} \text{Temperature} \\ (K) \end{matrix} \begin{matrix} \text{Solute concentration} \\ (\mathrm{g}{\mathrm{~mol}}/\mathrm{L}{\mathrm{~or~kg~mol/m^{3}}}) \end{matrix} \begin{matrix} \text{Diffusivity} (cm^{2}/s \times  \\ 10^{5}\ \text{or}\ m^{2}/s \times 10^{9})\end{matrix}
Chlorine Water 289 0.12 1.26
Hydrogen chloride Water 273 9 2.7
2 1.8
283 9 3.3
2.5 2.5
289 0.5 2.44
Ammonia Water 278 3.5 1.24
288 1.0 1.77
Carbon dioxide Water 283 0 1.46
293 0 1.77
Sodium chloride Water 291 0.05 1.26
0.2 1.21
1.0 1.24
3.0 1.36
5.4 1.54
Methanol Water 288 0 1.28
Acetic acid Water 285.5 1.0 0.82
0.0 0.91
291 1.0 0.96
Ethanol Water 283 3.75 0.50
0.05 0.83
289 2.0 0.90
n-Butanol Water 288 0 0.77
Carbon dioxide Ethanol 290 0 3.20
Chloroform Ethanol 293 2.0 1.25

Related Answered Questions