Question 10.2: Compute the 3𝜎 X chart upper and lower control limits for th......

Compute the 3𝜎 \overline{X} chart upper and lower control limits for the moisture data in Table 10.1.

TABLE 10.1 Moisture content for salt packages, as a percentage of total weight
Sample Sample Values Mean (\overline{X}) Range (R) SD (s)
1 2.53 2.66 1.88 2.21 2.26 2.308 0.780 0.303
2 2.69 2.38 2.34 2.47 2.61 2.498 0.350 0.149
3 2.67 2.23 2.1 2.43 2.54 2.394 0.570 0.230
4 2.10 2.26 2.51 2.58 2.28 2.346 0.480 0.196
5 2.64 2.42 2.56 2.51 2.36 2.498 0.280 0.111
6 2.64 1.63 2.95 2.12 2.67 2.402 1.320 0.525
7 2.58 2.69 3.01 3.01 2.23 2.704 0.78 0.327
8 2.31 2.39 2.60 2.40 2.46 2.432 0.290 0.108
9 3.03 2.68 2.27 2.54 2.63 2.63 0.760 0.274
10 2.86 3.22 2.72 3.09 2.48 2.874 0.740 0.294
11 2.71 2.80 3.09 2.60 3.39 2.918 0.790 0.320
12 2.95 3.54 2.59 3.31 2.87 3.052 0.950 0.375
13 3.14 2.84 3.77 2.80 3.22 3.154 0.970 0.390
14 2.85 3.29 3.25 3.35 3.59 3.266 0.740 0.267
15 2.82 3.71 3.36 2.95 3.37 3.242 0.890 0.358
16 3.17 3.07 3.14 3.63 3.70 3.342 0.630 0.298
17 2.81 3.21 2.95 3.04 2.85 2.972 0.400 0.160
18 2.99 2.65 2.79 2.80 2.95 2.836 0.340 0.137
19 3.11 2.74 2.59 3.01 3.03 2.896 0.520 0.221
20 2.83 2.74 3.03 2.68 2.49 2.754 0.540 0.198
21 2.76 2.85 2.59 2.23 2.87 2.66 0.640 0.265
22 2.54 2.63 2.32 2.48 2.93 2.58 0.610 0.226
23 2.27 2.54 2.82 2.11 2.69 2.486 0.710 0.293
24 2.40 2.62 2.84 2.50 2.51 2.574 0.440 0.168
25 2.41 2.72 2.29 2.35 2.63 2.48 0.430 0.186
26 2.40 2.33 2.40 2.02 2.43 2.316 0.410 0.169
27 2.56 2.47 2.11 2.43 2.85 2.484 0.740 0.266
28 2.21 2.61 2.59 2.24 2.34 2.398 0.400 0.191
29 2.56 2.26 1.95 2.26 2.40 2.286 0.610 0.225
30 2.42 2.37 2.13 2.09 2.41 2.284 0.330 0.161
31 2.62 2.11 2.47 2.27 2.49 2.392 0.510 0.201
32 2.21 2.15 2.18 2.59 2.61 2.348 0.460 0.231
\overline{\overline{X}}= 2.6502 \overline{R} = 0.6066 \overline{s} = 0.2445
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

With sample 6 deleted, the value of \overset{=}{ X} is 2.658, and the value of \overline{R} is 0.5836. The sample size is n = 5. From the table, A_{2} = 0.577. Therefore the upper control limit is 2.658 + (0.577)(0.5836) = 2.995, and the lower control limit is 2.658−(0.577)(0.5836) = 2.321.

Related Answered Questions

Question: 10.8

Verified Answer:

With sample 6 deleted, the value of \overli...
Question: 10.1

Verified Answer:

The value of \overline{R} is 0.6066...