Question 3.SP.1: Compute the atmospheric pressure at elevation 20,000 ft, con......

Compute the atmospheric pressure at elevation 20,000 \mathrm{ft}, considering the atmosphere as a static fluid. Assume standard atmosphere at sea level. Use four methods; (a) air of constant density; (b) constant temperature between sea level and 20,000 \mathrm{ft} ;(c) isentropic condition (d) air temperature decreasing linearly with elevation at the standard lapse rat of 0.00356^{\circ} \mathrm{F} / \mathrm{ft}

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Appendix A, Table A.3, the conditions of the standard atmosphere at sea level are T_{1}=59.0^{\circ} \mathrm{F}, p_{1}=14.70 \mathrm{psia}, \gamma_{1}=0.07648 \mathrm{lb} / \mathrm{ft}^{3}, where subscript 1 indicates conditions at our reference elevation, sea level.

(a) Constant density

From Sec. 3.2: \frac{d p}{d z}=-\gamma ; \quad d p=-\gamma d z ; \quad \int_{p_{1}}^{p} d p=-\gamma \int_{z_{1}}^{z} d z

so

p-p_{1}=-\gamma\left(z-z_{1}\right)

and    p=14.70(144)-0.07648(20,000)=587 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{abs}=4.08 psia

(b) Isothermal

From Sec. 2.7: p v= constant; so \frac{p}{\gamma}=\frac{p_{1}}{\gamma_{1}} if g is constant

Eq. (3.2) :

\frac{d p}{d z}=-\gamma, \quad \text { where } \quad \gamma=\frac{p \gamma_{1}}{p_{1}} \begin{aligned}& \frac{d p}{p}=-\frac{\gamma_{1}}{p_{1}} d z\end{aligned}

Integrating, \quad \int_{p_{1}}^{p} \frac{d p}{p}=\ln \frac{p}{p_{1}}=-\frac{\gamma_{1}}{p_{1}} \int_{z_{1}}^{z} d z=-\frac{\gamma_{1}}{p_{1}}\left(z-z_{1}\right)

\frac{p}{p_{1}}=\exp \left[-\left(\frac{\gamma_{1}}{p_{1}}\right)\left(z-z_{1}\right)\right]

Thus

p=14.70 \exp \left[-\frac{0.07648}{14.70(144)}(20,000)\right]=7.14 \text { psia }

(c) Isentropic

From Sec. 2.7: \quad p v^{1.4}=\frac{p}{\rho^{1.4}}= constant; \quad so \quad \frac{p}{\gamma^{1.4}}= constant =\frac{p}{\gamma_{1}^{1.4}}

Eq. (3.2): \quad \frac{d p}{d z}=-\gamma, \quad where \gamma=\gamma_{1}\left(\frac{p}{p_{1}}\right)^{1 / 1.4}=\gamma_{1}\left(\frac{p}{p_{1}}\right)^{0.714}

so      d p=-\gamma_{1}\left(\frac{p}{p_{1}}\right)^{0.714} d z

\begin{aligned}& \text { Integrating: } \\& \qquad \begin{aligned}\int_{p_{1}}^{p} p^{-0.714} d p & =-\gamma_{1} p_{1}^{-0.714} \int_{z_{1}}^{z} d z \\p^{0.286}-p_{1}^{0.286} & =-0.286 \gamma_{1} p_{1}^{-0.714}\left(z-z_{1}\right) \\p^{0.286} & =(14.70 \times 144)^{0.286}-0.286(0.07648)(14.70 \times 144)^{-0.714}(20,000) \\p & =942 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{abs}=6.54 \mathrm{psia} \end{aligned}\end{aligned}

(d) Temperature decreasing linearly with elevation

For the standard lapse rate (Fig. 2.2): T=a+b z, where a=59.00+459.67=518.67^{\circ} \mathrm{R} and b=-0.003560^{\circ} \mathrm{R} / \mathrm{ft}

Eqs. (3.2) and (2.4): \quad \frac{d p}{d z}=-\rho g ; \quad \rho=\frac{p}{R T}

Combining to eliminate \rho, which varies, rearranging, and substituting for T,

\frac{d p}{p}=-\frac{g d z}{R(a+b z)}

Integrating:

\int_{1}^{2} \frac{d p}{p}=-\frac{g}{R} \int_{1}^{2} \frac{d z}{a+b z} \ln \left(\frac{p_{2}}{p_{1}}\right)=-\frac{g}{R b} \ln \left(\frac{a+b z_{2}}{a+b z_{1}}\right)=\ln \left(\frac{a+b z_{2}}{a+b z_{1}}\right)^{-g / R b}

i.e.,          \quad \frac{p_{2}}{p_{1}}=\left(\frac{a+b z_{2}}{a+b z_{1}}\right)^{-g / R b}

Here        \frac{-g}{R b}=\frac{-32.174}{1716(-0.003560)}=5.27

and, from Table A.3: p_{1}=14.696 psia when z_{1}=0.

Thus \quad \frac{p_{2}}{14.696}=\left(\frac{518.67-0.003560 \times 20,000}{518.67+0}\right)^{5.27}=0.459

p_{2}=14.696(0.459)=6.75 psia \quad

 \frac{d p}{d z}=-\gamma      (3.2)

 \frac{p}{\rho}=p v=R T          (2.4)

 

TABLEA.3 The ICAO  {}^a    standard atmosphere  {}^b
  \textbf { Elevation above sea level }      \textbf { Temperature }  \\ T    \textbf { Absolute pressure }  \\  p    \textbf { Specific weight } \\ \gamma    \textbf { Density, }   \\ \rho    \textbf { Absolute viscosity } \\ \mu    \textbf { Kinematic viscosity } \\\nu \textbf { Speed of sound }  \\ c   \textbf { Gravitational acceleration } \\ g
  \mathbf{ft}   { }^{\circ} \mathbf{F}   \mathbf{psia}   \mathbf{lb} / \mathbf{ft}^3   \mathbf{sl} / \mathbf{ug} / \mathbf{ft}^3    10^{-6} \mathbf{lb} \cdot \mathbf{sec} / \mathbf{ft}^2   10^{-3} \mathbf{ft}^2 / \mathbf{sec}   \mathbf{ft} / \mathbf{sec}   \mathbf{ft} / \mathbf{sec}^2
0 59.000 14.6959 0.076472 0.0023768 0.37372 0.15724 1116.45 32.1740
5,000 41.173 12.2283 0.065864 0.0020481 0.36366 0.17756 1097.08 32.158
10,000 23.355 10.1083 0.056424 0.0017555 0.35343 0.20133 1077.4 32.142
15,000 5.545 8.2970 0.048068 0.0014961 0.34302 0.22928 1057.35 32.129
20,000 -12.255 6.7588 0.040694 0.0012672 0.33244 0.26234 1036.94 32.113
25,000 -30.048 5.4607 0.034224 0.0010663 0.32166 0.30167 1016.11 32.097
30,000 -47.832 4.3726 0.028573 0.00089065 0.31069 0.34884 994.85 32.081
35,000 -65.607 3.4676 0.023672 0.00073819 0.29952 0.40575 973.13 32.068
40,000 -69.700 2.7300 0.018823 0.00058726 0.29691 0.50559 968.08 32.052
45,000 -69.700 2.1489 0.014809 0.00046227 0.29691 0.6423 968.08 32.036
50,000 -69.700 1.6917 0.011652 0.00036391 0.29691 0.81589 968.08 32.020
60,000 -69.700 1.0488 0.007218 0.00022561 0.29691 1.3160 968.08 31.991
70,000 -67.425 0.6509 0.004449 0.0001392 0.29836 2.1434 970.9 31.958
80,000 -61.976 0.4063 0.002737 0.000085707 0.30182 3.5215 977.62 31.930
90,000 -56.535 0.2554 0.001695 0.000053145 0.30525 5.7436 984.28 31.897
100,000 -51.099 0.1616 0.001058 0.000033182 0.30865 9.3018 990.91 31.868
  \mathbf{km} { }^{\circ} \mathbf{C} \mathbf{kPa} a b s \mathbf{~N} / \mathbf{m}^3 \mathbf{~kg} / \mathbf{m}^3 10^{-6} \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2 10^{-6} \mathbf{~m}^2 / \mathbf{s} \mathbf{m} / \mathbf{s} \mathbf{m} / \mathbf{s}^2
0 15.000 101.325 12.0131 1.2250 17.894 14.607 340.294 9.80665
1 8.501 89.876 10.8987 1.1117 17.579 15.813 336.43 9.8036
2 2.004 79.501 9.8652 1.0066 17.260 17.147 332.53 9.8005
3 -4.500 70.121 8.9083 0.90925 16.938 18.628 328.58 9.7974
4 -10.984 61.66 8.0250 0.81935 16.612 20.275 324.59 9.7943
5 -17.474 54.048 7.2105 0.73643 16.282 22.110 320.55 9.7912
6 -23.963 47.217 6.4613 0.66011 15.949 24.161 316.45 9.7882
8 -36.935 35.651 5.1433 0.52579 15.271 29.044 308.11 9.7820
10 -49.898 26.499 4.0424 0.41351 14.577 35.251 299.53 9.7759
12 -56.500 19.399 3.0476 0.31194 14.216 45.574 295.07 9.7697
14 -56.500 14.170 2.2247 0.22786 14.216 62.391 295.07 9.7636
16 -56.500 10.352 1.6243 0.16647 14.216 85.397 295.07 9.7575
18 -56.500 7.565 1.1862 0.12165 14.216 116.86 295.07 9.7513
20 -56.500 5.529 0.8664 0.08891 14.216 159.89 295.07 9.7452
25 -51.598 2.549 0.3900 0.04008 14.484 361.35 298.39 9.7300
30 -46.641 1.197 0.1788 0.01841 14.753 801.34 301.71 9.7147
a International Civil Aviation Organization; see Sec. 2.9.
b In these tables, if (for example, at 0 \mathrm{ft} ) \mu is given as 0.37372 and the units are 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2 then \mu=0.37372 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2
3.1

Related Answered Questions