Compute the atmospheric pressure at elevation 20,000 \mathrm{ft}, considering the atmosphere as a static fluid. Assume standard atmosphere at sea level. Use four methods; (a) air of constant density; (b) constant temperature between sea level and 20,000 \mathrm{ft} ;(c) isentropic condition (d) air temperature decreasing linearly with elevation at the standard lapse rat of 0.00356^{\circ} \mathrm{F} / \mathrm{ft}
From Appendix A, Table A.3, the conditions of the standard atmosphere at sea level are T_{1}=59.0^{\circ} \mathrm{F}, p_{1}=14.70 \mathrm{psia}, \gamma_{1}=0.07648 \mathrm{lb} / \mathrm{ft}^{3}, where subscript 1 indicates conditions at our reference elevation, sea level.
(a) Constant density
From Sec. 3.2: \frac{d p}{d z}=-\gamma ; \quad d p=-\gamma d z ; \quad \int_{p_{1}}^{p} d p=-\gamma \int_{z_{1}}^{z} d z
so
p-p_{1}=-\gamma\left(z-z_{1}\right)and p=14.70(144)-0.07648(20,000)=587 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{abs}=4.08 psia
(b) Isothermal
From Sec. 2.7: p v= constant; so \frac{p}{\gamma}=\frac{p_{1}}{\gamma_{1}} if g is constant
Eq. (3.2) :
\frac{d p}{d z}=-\gamma, \quad \text { where } \quad \gamma=\frac{p \gamma_{1}}{p_{1}} \begin{aligned}& \frac{d p}{p}=-\frac{\gamma_{1}}{p_{1}} d z\end{aligned}Integrating, \quad \int_{p_{1}}^{p} \frac{d p}{p}=\ln \frac{p}{p_{1}}=-\frac{\gamma_{1}}{p_{1}} \int_{z_{1}}^{z} d z=-\frac{\gamma_{1}}{p_{1}}\left(z-z_{1}\right)
\frac{p}{p_{1}}=\exp \left[-\left(\frac{\gamma_{1}}{p_{1}}\right)\left(z-z_{1}\right)\right]Thus
p=14.70 \exp \left[-\frac{0.07648}{14.70(144)}(20,000)\right]=7.14 \text { psia }(c) Isentropic
From Sec. 2.7: \quad p v^{1.4}=\frac{p}{\rho^{1.4}}= constant; \quad so \quad \frac{p}{\gamma^{1.4}}= constant =\frac{p}{\gamma_{1}^{1.4}}
Eq. (3.2): \quad \frac{d p}{d z}=-\gamma, \quad where \gamma=\gamma_{1}\left(\frac{p}{p_{1}}\right)^{1 / 1.4}=\gamma_{1}\left(\frac{p}{p_{1}}\right)^{0.714}
so d p=-\gamma_{1}\left(\frac{p}{p_{1}}\right)^{0.714} d z
\begin{aligned}& \text { Integrating: } \\& \qquad \begin{aligned}\int_{p_{1}}^{p} p^{-0.714} d p & =-\gamma_{1} p_{1}^{-0.714} \int_{z_{1}}^{z} d z \\p^{0.286}-p_{1}^{0.286} & =-0.286 \gamma_{1} p_{1}^{-0.714}\left(z-z_{1}\right) \\p^{0.286} & =(14.70 \times 144)^{0.286}-0.286(0.07648)(14.70 \times 144)^{-0.714}(20,000) \\p & =942 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{abs}=6.54 \mathrm{psia} \end{aligned}\end{aligned}
(d) Temperature decreasing linearly with elevation
For the standard lapse rate (Fig. 2.2): T=a+b z, where a=59.00+459.67=518.67^{\circ} \mathrm{R} and b=-0.003560^{\circ} \mathrm{R} / \mathrm{ft}
Eqs. (3.2) and (2.4): \quad \frac{d p}{d z}=-\rho g ; \quad \rho=\frac{p}{R T}
Combining to eliminate \rho, which varies, rearranging, and substituting for T,
\frac{d p}{p}=-\frac{g d z}{R(a+b z)}Integrating:
\int_{1}^{2} \frac{d p}{p}=-\frac{g}{R} \int_{1}^{2} \frac{d z}{a+b z} \ln \left(\frac{p_{2}}{p_{1}}\right)=-\frac{g}{R b} \ln \left(\frac{a+b z_{2}}{a+b z_{1}}\right)=\ln \left(\frac{a+b z_{2}}{a+b z_{1}}\right)^{-g / R b}i.e., \quad \frac{p_{2}}{p_{1}}=\left(\frac{a+b z_{2}}{a+b z_{1}}\right)^{-g / R b}
Here \frac{-g}{R b}=\frac{-32.174}{1716(-0.003560)}=5.27
and, from Table A.3: p_{1}=14.696 psia when z_{1}=0.
Thus \quad \frac{p_{2}}{14.696}=\left(\frac{518.67-0.003560 \times 20,000}{518.67+0}\right)^{5.27}=0.459
p_{2}=14.696(0.459)=6.75 psia \quad
\frac{d p}{d z}=-\gamma (3.2)
\frac{p}{\rho}=p v=R T (2.4)
TABLEA.3 The ICAO {}^a standard atmosphere {}^b | ||||||||
\textbf { Elevation above sea level } | \textbf { Temperature } \\ T | \textbf { Absolute pressure } \\ p | \textbf { Specific weight } \\ \gamma | \textbf { Density, } \\ \rho | \textbf { Absolute viscosity } \\ \mu | \textbf { Kinematic viscosity } \\\nu | \textbf { Speed of sound } \\ c | \textbf { Gravitational acceleration } \\ g |
\mathbf{ft} | { }^{\circ} \mathbf{F} | \mathbf{psia} | \mathbf{lb} / \mathbf{ft}^3 | \mathbf{sl} / \mathbf{ug} / \mathbf{ft}^3 | 10^{-6} \mathbf{lb} \cdot \mathbf{sec} / \mathbf{ft}^2 | 10^{-3} \mathbf{ft}^2 / \mathbf{sec} | \mathbf{ft} / \mathbf{sec} | \mathbf{ft} / \mathbf{sec}^2 |
0 | 59.000 | 14.6959 | 0.076472 | 0.0023768 | 0.37372 | 0.15724 | 1116.45 | 32.1740 |
5,000 | 41.173 | 12.2283 | 0.065864 | 0.0020481 | 0.36366 | 0.17756 | 1097.08 | 32.158 |
10,000 | 23.355 | 10.1083 | 0.056424 | 0.0017555 | 0.35343 | 0.20133 | 1077.4 | 32.142 |
15,000 | 5.545 | 8.2970 | 0.048068 | 0.0014961 | 0.34302 | 0.22928 | 1057.35 | 32.129 |
20,000 | -12.255 | 6.7588 | 0.040694 | 0.0012672 | 0.33244 | 0.26234 | 1036.94 | 32.113 |
25,000 | -30.048 | 5.4607 | 0.034224 | 0.0010663 | 0.32166 | 0.30167 | 1016.11 | 32.097 |
30,000 | -47.832 | 4.3726 | 0.028573 | 0.00089065 | 0.31069 | 0.34884 | 994.85 | 32.081 |
35,000 | -65.607 | 3.4676 | 0.023672 | 0.00073819 | 0.29952 | 0.40575 | 973.13 | 32.068 |
40,000 | -69.700 | 2.7300 | 0.018823 | 0.00058726 | 0.29691 | 0.50559 | 968.08 | 32.052 |
45,000 | -69.700 | 2.1489 | 0.014809 | 0.00046227 | 0.29691 | 0.6423 | 968.08 | 32.036 |
50,000 | -69.700 | 1.6917 | 0.011652 | 0.00036391 | 0.29691 | 0.81589 | 968.08 | 32.020 |
60,000 | -69.700 | 1.0488 | 0.007218 | 0.00022561 | 0.29691 | 1.3160 | 968.08 | 31.991 |
70,000 | -67.425 | 0.6509 | 0.004449 | 0.0001392 | 0.29836 | 2.1434 | 970.9 | 31.958 |
80,000 | -61.976 | 0.4063 | 0.002737 | 0.000085707 | 0.30182 | 3.5215 | 977.62 | 31.930 |
90,000 | -56.535 | 0.2554 | 0.001695 | 0.000053145 | 0.30525 | 5.7436 | 984.28 | 31.897 |
100,000 | -51.099 | 0.1616 | 0.001058 | 0.000033182 | 0.30865 | 9.3018 | 990.91 | 31.868 |
\mathbf{km} | { }^{\circ} \mathbf{C} | \mathbf{kPa} a b s | \mathbf{~N} / \mathbf{m}^3 | \mathbf{~kg} / \mathbf{m}^3 | 10^{-6} \mathbf{~N} \cdot \mathbf{s} / \mathbf{m}^2 | 10^{-6} \mathbf{~m}^2 / \mathbf{s} | \mathbf{m} / \mathbf{s} | \mathbf{m} / \mathbf{s}^2 |
0 | 15.000 | 101.325 | 12.0131 | 1.2250 | 17.894 | 14.607 | 340.294 | 9.80665 |
1 | 8.501 | 89.876 | 10.8987 | 1.1117 | 17.579 | 15.813 | 336.43 | 9.8036 |
2 | 2.004 | 79.501 | 9.8652 | 1.0066 | 17.260 | 17.147 | 332.53 | 9.8005 |
3 | -4.500 | 70.121 | 8.9083 | 0.90925 | 16.938 | 18.628 | 328.58 | 9.7974 |
4 | -10.984 | 61.66 | 8.0250 | 0.81935 | 16.612 | 20.275 | 324.59 | 9.7943 |
5 | -17.474 | 54.048 | 7.2105 | 0.73643 | 16.282 | 22.110 | 320.55 | 9.7912 |
6 | -23.963 | 47.217 | 6.4613 | 0.66011 | 15.949 | 24.161 | 316.45 | 9.7882 |
8 | -36.935 | 35.651 | 5.1433 | 0.52579 | 15.271 | 29.044 | 308.11 | 9.7820 |
10 | -49.898 | 26.499 | 4.0424 | 0.41351 | 14.577 | 35.251 | 299.53 | 9.7759 |
12 | -56.500 | 19.399 | 3.0476 | 0.31194 | 14.216 | 45.574 | 295.07 | 9.7697 |
14 | -56.500 | 14.170 | 2.2247 | 0.22786 | 14.216 | 62.391 | 295.07 | 9.7636 |
16 | -56.500 | 10.352 | 1.6243 | 0.16647 | 14.216 | 85.397 | 295.07 | 9.7575 |
18 | -56.500 | 7.565 | 1.1862 | 0.12165 | 14.216 | 116.86 | 295.07 | 9.7513 |
20 | -56.500 | 5.529 | 0.8664 | 0.08891 | 14.216 | 159.89 | 295.07 | 9.7452 |
25 | -51.598 | 2.549 | 0.3900 | 0.04008 | 14.484 | 361.35 | 298.39 | 9.7300 |
30 | -46.641 | 1.197 | 0.1788 | 0.01841 | 14.753 | 801.34 | 301.71 | 9.7147 |
a International Civil Aviation Organization; see Sec. 2.9. b In these tables, if (for example, at 0 \mathrm{ft} ) \mu is given as 0.37372 and the units are 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2 then \mu=0.37372 \times 10^{-6} \mathrm{lb} \cdot \mathrm{sec} / \mathrm{ft}^2 |