Question A.5: Consider a matrix A = |2 6 3 4| It is required to find its i......

Consider a matrix
\overline{A}=\left|\begin{matrix} 2&6 \\ 3&4   \end{matrix} \right|
It is required to find its inverse.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Attach a unit matrix of 2 × 2 and perform the operations as shown as follows:

\left|\begin{matrix} 2&6 \\ 3&4   \end{matrix} \right| \left|\begin{matrix} 1&0 \\ 0&1   \end{matrix} \right| → \frac{R_{1}}{2} \left|\begin{matrix} 1&3 \\ 3&4   \end{matrix} \right|\left|\begin{matrix} \frac{1}{2}&0 \\ 0&1   \end{matrix} \right| → R_{2} \ – \ 3R_{1} \left|\begin{matrix} 1&3 \\ 0&-5   \end{matrix} \right|\left|\begin{matrix} \frac{1}{2}&0 \\\\ \frac{-3}{2}&1   \end{matrix} \right|→ R_{1}+ \frac{5}{3}R_{2} \left|\begin{matrix} 1&0 \\ 0&-5   \end{matrix} \right|\left|\begin{matrix} \frac{-2}{5} & \frac{3}{5} \\\\ \frac{-3}{2}&1   \end{matrix} \right|→ R_{2} \ – \frac{1}{5}\left|\begin{matrix} 1&0 \\ 0&1   \end{matrix} \right| \left|\begin{matrix} \frac{-2}{5} & \frac{3}{5} \\\\ \frac{3}{10}& \frac{-1}{5}   \end{matrix} \right|

Thus, the inverse is
\overline{A}^{-1}=  \left|\begin{matrix} \frac{-2}{5} & \frac{3}{5} \\\\ \frac{3}{10}&\frac{-1}{5}   \end{matrix} \right|

Related Answered Questions

Question: A.2

Verified Answer:

The characteristic equation is given by \le...
Question: A.3

Verified Answer:

Its characteristics equation is \left|\beg...
Question: A.10

Verified Answer:

From Equations A.75 and A.76, l_{ij}=a_{ij...
Question: A.7

Verified Answer:

\overline{A}_{1} = \left|\begin{matrix}2 &a...
Question: A.1

Verified Answer:

This matrix can be reduced to an upper triangular ...