Question 3.7: Consider that there is a mutual coupling of ZM = j0.4 betwee......

Consider that there is a mutual coupling of Z_{M} = j0.4 between the branch elements 4 and 5 as shown in Figure 3.4. Recalculate the bus admittance matrix.

3.4
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The primitive impedance matrix is

\overset{ \ \rightharpoonup \ }{ Z}_{P} =\left|\begin{matrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0& 0& 3 & 0 &0 \\ 0 &0&0& j0.2 & j0.4 \\ 0 & 0& 0 & j0.4 & j0.3\end{matrix} \right|

For the coupled branch,

\overline{Y}_{jj} = \frac{1}{\overline{Z}_{jj}}

Therefore,

\left|\begin{matrix} j0.2 & j0.4  \\ j0.4 & j0.3 \end{matrix} \right|^{-1} =\left|\begin{matrix} -j3 & j4  \\ j4 & -j2 \end{matrix} \right|

Then the primitive Y matrix is

\overline{Y}_{P}=\left|\begin{matrix} 1 & 0 & 0 & 0 & 0  \\ 0 & 0.5 & 0 & 0 & 0  \\ 0 & 0 & 0.333 & 0 & 0 \\ 0 & 0 & 0 & j3 & -j4 \\ 0 & 0 & 0 & -j4 & j2 \end{matrix} \right|

Then the Y bus matrix is

\overline{Y}_{B}=\left|\begin{matrix} 1+j3 & j & -4j  \\ j & 0.5-j3 & j2   \\ -j4 & 2j & 0.333+j2  \end{matrix} \right|

If similar currents as in Example 3.1 are injected at buses 1 and 3, then

\left|\begin{matrix} V_{1} \\ V_{2} \\ V_{3} \end{matrix} \right|= \left|\begin{matrix} 0.549-j0.015 & 0.54-j0.033 & 0.543-j0.093 \\ 0.54-j0.033 & 0.563+j0.147 & 0.537-j0.123 \\ 0.543-j0.093 & 0.537- j0.123 & 0.565-j0.096 \end{matrix} \right| \left|\begin{matrix}1 \\ 0 \\ 1 \end{matrix} \right| =\left|\begin{matrix} 1.092-j0.079 \\ 1.077-j0.155 \\ 1.108+j0.003 \end{matrix} \right|

Related Answered Questions

Question: 3.3

Verified Answer:

The matrix is written by simply examining the figu...
Question: 3.6

Verified Answer:

From Example 3.1, \left|\begin{matrix} 1-j...
Question: 3.4

Verified Answer:

The bus incidence matrix is formed from the graph ...