Consider the motor of Fig. 7.2. Establish the following points (\ (|I_{a}| and \mid E_{f}\mid) on the V curve corresponding to full-load power output: (a) Stability limit, δ = – 90 deg. (b) Power factor of 0.8 Igging. (c) Unity power factor. (d) Power factor of 0.8 leading.
We recall the following specifications from Example (7.2) on a per-phase
basis:
As a result, we have
{\frac{764\times10^{3}}{3}}={\frac{-1327.91}{1.9}}|E_{f}|\sin\deltaThus
|E_{f}|\sin\delta=-364.38\ \mathrm{V}(a) For δ = -90 deg, we get
|E_{f}|=364.38\ \mathrm{V}We find I_{a} by using
I_{a}={\frac{V_{t}-E_{f}}{j X_{s}}}={\frac{1327.91-364.38\angle-90\mathrm{~deg}}{j1.9}} \\ =724.73\angle-74.66\ \mathrm{deg}\ \mathrm{A}(b) For \phi=-\cos^{-1}0.8\;=\;-\,36.87\;\mathrm{deg},
I_{a}=\frac{764\times10^{3}}{{\sqrt3}(2300)(0.8)}=239.73\angle-36.87\ \mathrm{deg}\ \mathrm{A}We find E_{f} from
E_{f}=V_{t}-j I_{a}X_{s} \\ =1327.91-(239.73\angle-36.87\ \mathrm{deg})(1.9)\angle90\ \mathrm{deg} \\ =1115.793\angle-19.061\ \mathrm{deg}\ \mathrm{V}(c) For unity power factor
I_{a}=\frac{764\times10^{3}}{2300\sqrt{3}}=191.78\angle0\,\mathrm{A}We can get the same result from
-|I_{a}|X_{s}=|E_{f}|\sin\delta=-364.38\,\mathrm{V}The value of \textstyle E_{f} is obtained from
E_{f}=1327.91-191.78(1.9)\angle90\ \mathrm{deg} \\ =1377\angle-15.34\ \mathrm{deg}\,\mathrm{V}(d) For a power factor of 0.8 leading, we have
I_{a}=239.73\angle36.87\ \mathrm{deg}\ \mathrm{A} \\ E_{f}=1327.91-(239.73\angle36.87\ \mathrm{deg})(1.9)\angle90\ \mathrm{deg} \\ =1642.17\angle-12.82\ \mathrm{degV}This concludes this example. We now discuss methods for starting a synchronous motor.