Question 7.9: Consider the motor of Fig. 7.2. Establish the following poin......

Consider the motor of Fig. 7.2. Establish the following points (\ (|I_{a}| and \mid E_{f}\mid) on the V curve corresponding to full-load power output: (a) Stability limit, δ = – 90 deg. (b) Power factor of 0.8 Igging. (c) Unity power factor. (d) Power factor of 0.8 leading.

7.2
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We recall the following specifications from Example (7.2) on a per-phase
basis:

V_{t}={\frac{2300}{\sqrt{3}}}=1327.91\ \mathrm{V} \\ P={\frac{764\times10^{3}}{3}}\ \mathrm{W} \\ X_{s}=1.9\;\Omega

As a result, we have

{\frac{764\times10^{3}}{3}}={\frac{-1327.91}{1.9}}|E_{f}|\sin\delta

Thus

|E_{f}|\sin\delta=-364.38\ \mathrm{V}

(a) For δ = -90 deg, we get

|E_{f}|=364.38\ \mathrm{V}

We find I_{a} by using

I_{a}={\frac{V_{t}-E_{f}}{j X_{s}}}={\frac{1327.91-364.38\angle-90\mathrm{~deg}}{j1.9}} \\ =724.73\angle-74.66\ \mathrm{deg}\ \mathrm{A}

(b) For \phi=-\cos^{-1}0.8\;=\;-\,36.87\;\mathrm{deg},

I_{a}=\frac{764\times10^{3}}{{\sqrt3}(2300)(0.8)}=239.73\angle-36.87\ \mathrm{deg}\ \mathrm{A}

We find E_{f} from

E_{f}=V_{t}-j I_{a}X_{s} \\ =1327.91-(239.73\angle-36.87\ \mathrm{deg})(1.9)\angle90\ \mathrm{deg} \\ =1115.793\angle-19.061\ \mathrm{deg}\ \mathrm{V}

(c) For unity power factor

I_{a}=\frac{764\times10^{3}}{2300\sqrt{3}}=191.78\angle0\,\mathrm{A}

We can get the same result from

-|I_{a}|X_{s}=|E_{f}|\sin\delta=-364.38\,\mathrm{V}

The value of \textstyle E_{f} is obtained from

E_{f}=1327.91-191.78(1.9)\angle90\ \mathrm{deg} \\ =1377\angle-15.34\ \mathrm{deg}\,\mathrm{V}

(d) For a power factor of 0.8 leading, we have

I_{a}=239.73\angle36.87\ \mathrm{deg}\ \mathrm{A} \\  E_{f}=1327.91-(239.73\angle36.87\ \mathrm{deg})(1.9)\angle90\ \mathrm{deg} \\ =1642.17\angle-12.82\ \mathrm{degV}

This concludes this example. We now discuss methods for starting a synchronous motor.

Related Answered Questions