Holooly Plus Logo

Question 3.9.4: Consider the problem of Example 3.6.1 and compute the respon......

Consider the problem of Example 3.6.1 and compute the response numerically. Compare the result to the analytical solution computed in Example 3.6.1 by plotting both the analytical solution and the numerical solution on the same graph.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The equation of motion to be solved in this example is

10 \ddot{x}(t)+10 x(t)=\frac{t}{t_1}-\left(\frac{t-t_1}{t_1}\right) \Phi\left(t-t_1\right)          (3.110)

where Φ is the Heaviside step function used to “turn on” the second term in the forcing function at t > t_1. The parameter t1 is used to control how steep the disturbance is. See Figure 3.16 for a plot of the driving force. The analytical solution is given in equation (3.78) to be

x(t)=\frac{F_0}{k}\left(\frac{t}{t_1}-\frac{\sin \omega_n t}{\omega_n t_1}\right)-\frac{F_0}{k}\left(\frac{t-t_1}{t_1}-\frac{\sin \omega_n\left(t-t_1\right)}{\omega_n t_1}\right) \Phi\left(t-t_1\right)    (3.111)

Again, the equation of motion can be solved numerically in the form given by equation (3.110) directly in Mathematica or by putting equation (3.110) into state-space form and solving Runge–Kutta in Mathcad or Matlab. The plots of both the numerical solution and analytical solution are given in Figure 3.25.

The Mathcad code for this solution follows:

x0 := 0 v0 := 0 m := 10 t1 := 1
k := 10 \omega n:=\sqrt{\frac{k}{m}} ωn = 1 F0 := 1
tp :=\frac{1}{\omega n } \cdot \operatorname{atan}\left(\frac{1-\cos (\omega n \cdot t 1)}{\sin (\omega n \cdot t 1)}\right) \quad \omega n \cdot tp =0.5 \quad tp =0.5
x m(t):=\frac{F 0}{k} \cdot\left[1+\frac{1}{\omega n \cdot t 1} \cdot \sqrt{2 \cdot(1-\cos (\omega n \cdot t 1))}\right]
x a(t):=\frac{F 0}{k} \cdot\left(\frac{t}{t 1}-\frac{\sin (\omega n \cdot t)}{\omega n \cdot t 1}\right)-\frac{F 0}{k}\left[\frac{t-t 1}{t 1}-\frac{\sin [\omega n \cdot(t-t 1)]}{\omega n \cdot t 1}\right] \Phi(t-t 1)
f(t):=\frac{t}{t 1} \cdot \frac{F 0}{m}-\frac{t-t 1}{t 1} \cdot \frac{F 0}{m} \cdot \Phi\left(t-t_1\right) \quad x:=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]
D(t, x):=\left[\begin{array}{c} X_1 \\ -\left(\omega n^2 \cdot X_0\right)+f(t) \end{array}\right] \quad x m(0)=0.196
Z := rkfixed (X, 0, 15, 2000, D)
t := Z^{<0>} x := \overrightarrow{xa(t)} xn := Z^{<1>} F := \overrightarrow{f(t)} Xmax := \overrightarrow{xm(t)}
3.16
3.25
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

The Matlab code for solving for the response is

clear all
%% analytical solution
t=0:0.01:15;
m=10; k=10; Fo=1; t1=1;
wn=sqrt(k/m);
Heaviside=stepfun(t, t1);% define Heaviside Step function for 0<t<15

for i=1:max(length(t)),
xt(i)=Fo/k*(t(i)/t1 - sin(wn*t(i))/wn/tl) - Fo/k*((t(i)-t1)/t1 –
sin(wn*(t(i)-t1))/wn*t1)*Heaviside(i);
end
plot(t,xt,'- -'); hold on
%% Numerical Solution
xo=[0; 0];
ts=[0 15];
[t, x]=ode45('f', ts, xo);
plot(t, x(:,1)); hold off
%--------------------------------------------
function v=f(t, x)
m=10; k=10; wn=sqrt(k/m); Fo=1; t1=1;
v=[x(2); x(1).*-wn^2 + t/t1*Fo/m-(t-t1)/tl*Fo/m*stepfun(t, t1)];

The Mathematica code for solving for the response is

In[1]:= 6 6PlotLegends'
In[2]:= x0 = 0;
v0 = 0;
m = 10;
k = 10;
\omega n =\sqrt{\frac{ k }{ m }} ;
t1 = 1;
F0 = 1;
tp = 0.5;
\operatorname{In}[10]:=\operatorname{xanal}[ t ]=\frac{ F 0}{ k } *\left(\frac{ t }{ t 1}-\frac{\operatorname{Sin}\left[\omega n ^* t \right]}{\omega n ^* t 1}\right)-\frac{ F 0}{ k } *\left(\frac{ t - t 1 }{ t1 }-\frac{\operatorname{Sin}\left[\omega n ^*( t - t 1)\right]}{\omega n ^* t 1}\right)
* UnitStep[t - t1];
xnum = NDSolve[{10 * x''[t] + 10 * x[t] == \frac{ t }{ t 1}-\left(\frac{ t - t 1}{ t 1}\right)
* UnitStep[t - t1], x[0] == x0, x'[0] == v0}, x[t],
{t, 0, 15}];
Plot[{Evaluate[x[t] /. xnum], xanal[t]}, {t, 0, 15},
PlotStyle → {RGBColor[1, 0, 0], RBColor[0, 1, 0]},
PlotLegend → {"Numerical", "Analytical"},
LegendPosition → {1, 0}, LegendSize S {1, 0.5}];

Related Answered Questions

Question: 3.8.2

Verified Answer:

The problem is to find F(t) such that θ satisfying...
Question: 3.8.1

Verified Answer:

Summing the moments about the pivot point yields [...
Question: 3.4.4

Verified Answer:

The equation of motion is m \ddot{x}+c \do...