Question A.12: Convert the matrix of Example A.10 into LDU form |1 2 1 0 0 ......

Convert the matrix of Example A.10 into LDU form

\left|\begin{matrix}1 &2 &1 &0 \\ 0& 3& 3& 1 \\ 2& 0& 2& 0 \\  1 &0 &0 &2 \end{matrix} \right| = l¹ × l² × l³ × D × u³ × u² × u¹

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The lower matrices are

l¹ × l² × l³ = \left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 0&0 \\ 2& 0& 1& 0 \\  1 &0 &0 &1 \end{matrix} \right| \left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 0&0 \\ 0& -4/3& 1& 0 \\  1 &-2/3 &0 &1 \end{matrix} \right| \left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 0&0 \\ 0& 0& 1& 0 \\  0&0 &1/4 &0 \end{matrix} \right|

The upper matrices are

u³ × u² × u¹ = \left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 0&1/3 \\ 0& 0& 1& 1/3 \\  0 &0 &0&1 \end{matrix} \right| \left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 1&0 \\ 0& 0& 1& 0 \\   0&0 &0 &1 \end{matrix} \right| \left|\begin{matrix}1 &2&1 &0 \\ 0& 1& 0&0 \\ 0& 0& 1& 0 \\  0&0 &0 &1 \end{matrix} \right|

The matrix D is

D = \left|\begin{matrix}1 &0&0 &0 \\ 0& 3& 0&0 \\ 0& 0& 4& 0 \\  0&0 &0 &7/3 \end{matrix} \right|

Thus, the LDU form of the original matrix is

\left|\begin{matrix}1 &0&0 &0 \\ 0& 1& 0&0 \\ 2& -4/3& 1& 0 \\  1 &-2/3 &1/4&1 \end{matrix} \right| \left|\begin{matrix}1 &0&0 &0 \\ 0& 3& 0&0 \\ 0& 0& 4& 0 \\   0&0 &0 &7/3 \end{matrix} \right| \left|\begin{matrix}1 &2&1 &0 \\ 0& 1& 1&1/3 \\ 0& 0& 1& 1/3 \\  0&0 &0 &1 \end{matrix} \right|

If the coefficient matrix is symmetrical (for a linear bilateral network), then

[L]=[U]^{t}             (A.109)

Because

l_{ip}(new) = a_{ip}/a_{pp}
u_{pi} = a_{pi}/a_{pp} (a_{ip} = a_{pi})              (A.110)

The LU and LDU forms are extensively used in power systems.

Related Answered Questions

Question: A.2

Verified Answer:

The characteristic equation is given by \le...
Question: A.3

Verified Answer:

Its characteristics equation is \left|\beg...
Question: A.10

Verified Answer:

From Equations A.75 and A.76, l_{ij}=a_{ij...
Question: A.7

Verified Answer:

\overline{A}_{1} = \left|\begin{matrix}2 &a...
Question: A.5

Verified Answer:

Attach a unit matrix of 2 × 2 and perform the oper...
Question: A.1

Verified Answer:

This matrix can be reduced to an upper triangular ...