Question 8.3.2: Cooling of an Ideal Gas Assuming ideal-gas behavior, calcula......

Cooling of an Ideal Gas
Assuming ideal-gas behavior, calculate the heat that must be transferred in each of the following cases.
1. A stream of nitrogen flowing at a rate of 100 mol/min is heated from 20°C to 100°C.
2. Nitrogen contained in a 5-liter flask at an initial pressure of 3 bar is cooled from 90°C to 30°C.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Neglecting kinetic energy changes, the energy balance for the open system of Part 1 is Q = ΔH, and that for the closed system of Part 2 is Q = ΔU. (Show it.) The problem is therefore to evaluate ΔH and ΔU for the two specified processes.
1. From Table B.2, Appendix B, the heat capacity of N_{2} at a constant pressure of 1 atm is

\begin{matrix}C_{p} [kJ/(mol·°C)]= 0.02900 + 0.2199 ×10^{-5} T +0.5723 ×10^{-8} T^{2} – 2.871 ×10^{-12} T^{3}\end{matrix}

where T is in °C. Since we are assuming ideal-gas behavior, the enthalpy change for the gas is independent of any pressure change that may occur, and hence, from Equation 8.3-10a,

\begin{matrix} \boxed{\Delta \hat{H}= \int_{T_{1}}^{T_{2}}{C_{p}(T)}  dT}& \begin{matrix} Ideal  gas:  exact\\ Nearly  ideal  gas:  approximate  for  variable  P\\ Nonideal  gas: exact  only  if  P  is  constant \end{matrix} \end{matrix}     \pmb{(8.3-10a)}
\begin{matrix}\Delta \hat{H}= \int_{20°C}^{100°C}{C_{p}(T)}  dT \\\\ \left. \Large{\Downarrow} \right.\\\Delta \hat{H}(kJ/mol) = 0.02900T \left. \large{]}_{20°C}^{100°C} \right.+ 0.2199\times 10^{-5}\frac{T^{2}}{2} \left. \large{]}_{20°C}^{100°C} \right.+ 0.5723\times 10^{-8}\frac{T^{3}}{3} \left. \large{]}_{20°C}^{100°C} \right. \\\\- 2.871 \times 10^{-12}\frac{T^{4}}{4} \left. \large{]}_{20°C}^{100°C} \right. \\\\ = (2.320 + 0.0106 + 1.9 \times 10^{-3}  –  7 \times 10^{-5})  kJ/mol = 2.332  kJ/mol \end{matrix}

If you were using APEx to perform the preceding calculation, you would simply enter the formula of Equation 8.3-12a

\boxed{\Delta \hat{H} \left(\frac{kJ}{mol} \right) \approx \int_{T_{1}}^{T_{2}}{C_{p}(T)}  dT= Enthalpy(“Species”,T1,T2,“T  unit”,“g”] }   \pmb{(8.3-12a)}

=Enthalpy(“nitrogen”, 20,100) [or =Enthalpy (“nitrogen”, 20,100,“C”, “g”)]
in a spreadsheet cell, and the value 2.332 (in kJ/mol) would be returned. Finally,

\dot{Q} = \Delta \dot{H} = \dot{n}\Delta \hat{H} \\= 100 \begin{array}{c|c}mol& 2.332  kJ \\ \hline min & mol\end{array} = \boxed{233  kJ/min}

2. To evaluate ΔU, we need the number of moles n, which may be calculated using the ideal-gas equation of state, and Δ\hat{U}, which we calculate from Equation 8.3-12b

\boxed{\begin{matrix} \Delta \hat{U} \left(\frac{kJ}{mol} \right) \approx \int_{T_{1}}^{T_{2}}{C_{v}(T)}  dT\approx \int_{T_{1}}^{T_{2}}{C_{p}(T)}  dT –  R(T_{2}  –  T_{1}) \left( R= 8.314 \times 10^{-3} \frac{kJ}{mol\cdot K} \right) \\ \approx Enthalpy(“Species”,T1,T2,“T  unit”,“g”) –  8.314e-3^{*} (T2  –  T1) \end{matrix}}   \pmb{(8.3-12b)}

\Delta \hat{U} ≈ \int_{90°C}^{30°C} (C_{p})_{N_{2}}(T)  dT –  R(30°C  – 90°C)

Substituting the formula from Table B.2 for the heat capacity and integrating as in Part (1) or entering the APEx formula =Enthalpy(“nitrogen”,90,30) for the integral, and substituting 8.314 × 10^{-3} kJ/(mol · K) for R, yields Δ\hat{U} = – 1.250 kJ/mol.

Calculate n:
At the initial condition (the only point at which we know P, V, and T)

n= PV/RT\\ =\frac{(3.00  bar)(5.00  L)}{[0.08314  L\cdot bar /(mol\cdot K)](363  K)} = 0.497  mol

Calculate Q:

Q=\Delta U=n\Delta \hat{U} \\ =(0.497  mol) (-  1.250  kJ/mol) = \boxed{- 0.621  kJ}

Related Answered Questions