Holooly Plus Logo

Question 13.14: Cooling of Moist Air Outdoor air at sea level enters an air ......

Cooling of Moist Air

Outdoor air at sea level enters an air conditioner’s cooling coil at 2000 ft³/min (944 L/s). The inlet dry-bulb condition is 100°F (38°C) and the wetbulb condition is 75°F (24°C). The air is cooled to a dry-bulb temperature of 55°F (13°C) and 90% RH. Assume that the liquid water leaves the coil at 50°F.

(a) Find the total heat transfer rate as well as the sensible and latent cooling loads on the coil.
(b) Determine the sensible heat factor, apparatus dew point, and the bypass factor of the cooling coil.
Given: \dot{V}_{1} = 2000  cfm, T_{db1} = 100°F, T_{wb1} = 75°F, T_{db2} = 55°F, \phi_{2} = 0.9, and T_{cc,liq} = 50°F.
Figure: See Figure 13.16.
Find: \dot{Q}_{tot c}, \dot{Q}_{sen},\dot{Q}_{lat}, SHF_{cc}, ADP, BP_{cc}.
Lookup values: The enthalpy of liquid water at 50°F is 18.06  Btu/lb_{w} from Table A3. From the sea-level psychrometric chart, we determine the following inlet and outlet values in IP units:

State W, lb_{w}/lb_{a} h, Btu/lb_{a} v, ft^{3}/lb_{a}
1 0.013 38.4 14.4
2 0.0083 22.2

 

 

TABLE A.3 (IP Units) Properties of Saturated Steam
Pressure (psia) Saturation Temp. (°F) Specific Volume
(ft³/lb_{m})
Internal Energy (Btu/lb_{m}) Enthalpy (Btu/lb_{m}) Entropy (Btu/(lb_{m} · °R))
Sat. Liquid Sat. Vapor Sat. Liquid Evap. Sat. Vapor Sat. Liquid Evap. Sat. Vapor Sat. Liquid Evap. Sat. Vapor
p Tsat vf vg uf ufg ug hf hfg hg sf sfg sg
0.08866 32.02 0.016022 3302 0.00 1021.2 1021.2 0.01 1075.4 1075.4 0.00000 2.1869 2.1869
0.09992 35.00 0.016021 2948 2.99 1019.2 1022.2 3.00 1073.7 1076.7 0.00607 2.1704 2.1764
0.12166 40.00 0.016020 2445 8.02 1015.8 1023.9 8.02 1070.9 1078.9 0.01617 2.1430 2.1592
0.14748 45.00 0.016021 2037 13.04 1012.5 1025.5 13.04 1068.1 1081.1 0.02618 2.1162 2.1423
0.17803 50.00 0.016024 1704.2 18.06 1009.1 1027.2 18.06 1065.2 1083.3 0.03607 2.0899 2.1259
0.2563 60.00 0.016035 1206.9 28.08 1002.4 1030.4 28.08 1059.6 1087.7 0.05555 2.0388 2.0943
0.3632 70.00 0.016051 867.7 38.09 995.6 1033.7 38.09 1054.0 1092.0 0.07463 1.9896 2.0642
0.5073 80.00 0.016073 632.8 48.08 988.9 1037.0 48.09 1048.3 1096.4 0.09332 1.9423 2.0356
0.6988 90.00 0.016099 467.7 58.07 982.2 1040.2 58.07 1042.7 1100.7 0.11165 1.8966 2.0083
0.9503 100.00 0.016130 350.0 68.04 975.4 1043.5 68.05 1037.0 1105.0 0.12963 1.8526 1.9822
1 101.70 0.016136 333.6 69.74 974.3 1044.0 69.74 1036.0 1105.8 0.13266 1.8453 1.9779
2 126.04 0.016230 173.75 94.02 957.8 1051.8 94.02 1022.1 1116.1 0.17499 1.7448 1.9198
3 141.43 0.016300 118.72 109.38 947.2 1056.6 109.39 1013.1 1122.5 0.20089 1.6852 1.8861
4 152.93 0.016358 90.64 120.88 939.3 1060.2 120.89 1006.4 1127.3 0.21983 1.6426 1.8624
5 162.21 0.016407 73.53 130.15 932.9 1063.0 130.17 1000.9 1131.0 0.23486 1.6093 1.8441
6 170.03 0.016451 61.98 137.98 927.4 1065.4 138.00 996.2 1134.2 0.24736 1.5819 1.8292
8 192.84 0.016526 47.35 150.81 918.4 1069.2 150.84 988.4 1139.3 0.26754 1.5383 1.8058
10 193.19 0.016590 38.42 161.20 911.0 1072.2 161.23 982.1 1143.3 0.28358 1.5041 1.7877
14.696 211.99 0.016715 26.80 180.10 897.5 1077.6 180.15 970.4 1150.5 0.31212 1.4446 1.7567
15 213.03 0.016723 26.29 181.14 896.8 1077.9 181.19 969.7 1150.9 0.31367 1.4414 1.7551
20 227.96 0.016830 20.09 196.19 885.8 1082.0 196.26 960.1 1156.4 0.33580 1.3962 1.7320
25 240.08 0.016922 16.306 208.44 876.9 1085.3 208.52 952.2 1160.7 0.35345 1.3607 1.7142
30 250.34 0.017004 13.748 218.84 869.2 1088.0 218.93 945.4 1164.3 0.36821 1.3314 1.6996
35 259.30 0.017073 11.900 227.93 862.4 1090.3 228.04 939.3 1167.4 0.38093 1.3064 1.6873
40 267.26 0.017146 10.501 236.03 856.2 1092.3 236.16 933.8 1170.0 0.39214 1.2845 1.6767
45 274.46 0.017209 9.403 243.37 850.7 1094.0 243.51 928.8 1172.3 0.40218 1.2651 1.6673
50 281.03 0.017269 8.518 250.08 845.5 1095.6 250.24 924.2 1174.4 0.41129 1.2476 1.6589
55 287.10 0.017325 7.789 256.28 840.8 1097.0 256.46 919.9 1176.3 0.41963 1.2317 1.6513
60 292.73 0.017378 7.177 262.06 836.3 1098.3 262.25 915.8 1178.0 0.42733 1.2170 1.6444
65 298.00 0.017429 6.657 267.46 832.1 1099.5 267.67 911.9 1179.6 0.43450 1.2035 1.6380
70 302.96 0.017478 6.209 272.56 828.1 1100.6 272.79 908.3 1181.0 0.44120 1.1909 1.6321
75 307.63 0.017524 5.818 277.37 824.3 1101.6 277.61 904.8 1182.4 0.44749 1.1790 1.6265
80 312.07 0.017570 5.474 281.95 820.6 1102.6 282.21 901.4 1183.6 0.45344 1.1679 1.6214
85 316.29 0.017613 5.17 286.3 817.1 1103.5 286.58 898.2 1184.8 0.45907 1.1574 1.6165
90 320.31 0.017655 4.898 290.46 813.8 1104.3 290.76 895.1 1185.9 0.46442 1.1475 1.6119
95 324.16 0.017696 4.654 294.45 810.6 1105.0 294.76 892.1 1186.9 0.46952 1.1380 1.6076
100 327.86 0.017736 4.434 298.28 807.5 1105.8 298.61 889.2 1187.8 0.47439 1.1290 1.6034
110 334.82 0.017813 4.051 305.52 801.6 1107.1 305.88 883.7 1189.6 0.48355 1.1122 1.5957
120 341.30 0.017886 3.73 312.27 796 1108.3 312.67 878.5 1191.1 0.49201 1.0966 1.5886
130 347.37 0.017957 3.457 318.61 790.7 1109.4 319.04 873.5 1192.5 0.49989 1.0822 1.5821
140 353.08 0.018024 3.221 324.58 785.7 1110.3 325.05 868.7 1193.8 0.50727 1.0688 1.5761
150 358.48 0.018089 3.016 330.24 781 1111.2 330.75 864.2 1194.9 0.51422 1.0562 1.5704
0.6113 0.01 0.001 206.14 0 2375.3 2375.3 0.01 2501.3 2501.4 0 9.1562 9.1562
1.0 6.98 0.001 129.21 29.30 2355.7 2385.0 29.30 2484.9 2514.2 0.1059 8.8697 8.9756
1.5 13.03 0.001001 87.98 54.71 2338.6 2393.3 54.71 2470.6 2525.3 0.1957 8.6322 8.8279
2.0 17.50 0.001001 67.00 73.48 2326.0 2399.5 73.48 2460.0 2533.5 0.2607 8.4629 8.7237
2.5 21.08 0.001002 54.25 88.48 2315.9 2404.4 88.49 2451.6 2540.4 0.3120 8.3311 8.6432
3.0 24.08 0.001003 45.67 101.04 2307.5 2408.5 101.05 2444.5 2545.5 0.3545 8.2231 8.5776
4.0 28.96 0.001004 34.80 121.45 2293.7 2415.2 121.46 2432.9 2554.4 0.4226 8.0520 8.4746
5.0 32.88 0.001005 28.19 137.81 2282.7 2420.5 137.82 2423.7 2561.5 0.4764 7.9187 8.3951
7.5 40.29 0.001008 19.24 168.78 2261.7 2430.5 168.79 2406.0 2574.8 0.5764 7.6750 8.2515
10 45.81 0.001010 14.67 191.82 2246.1 2437.9 191.83 2392.8 2584.7 0.6493 7.5009 8.1502
15 53.97 0.001014 10.02 225.92 2222.8 2448.7 225.94 2373.1 2599.1 0.7549 7.2536 8.0085
20 60.06 0.001017 7.649 251.38 2205.4 2456.7 251.40 2358.3 2609.7 0.8320 7.0766 7.9085
25 64.97 0.001020 6.204 271.90 2191.2 2463.1 271.93 2346.3 2618.2 0.8931 6.9383 7.8314
30 69.10 0.001022 5.229 289.20 2179.2 2468.4 289.23 2336.1 2625.3 0.9439 6.8247 7.7686
40 75.87 0.001027 3.993 317.53 2159.5 2477.0 317.58 2319.2 2636.8 1.0259 6.6441 7.6700
50 81.33 0.001030 3.240 340.44 2143.4 2483.9 340.49 2305.4 2645.9 1.0910 6.5029 7.5939
75 91.78 0.001037 2.217 384.31 2112.4 2496.7 384.39 2278.6 2663.0 1.2130 6.2434 7.4564
100 99.63 0.001043 1.6940 417.36 2088.7 2506.1 417.46 2258.0 2675.5 1.3026 6.0568 7.3594
125 105.99 0.001048 1.3749 444.19 2069.3 2513.5 444.32 2241.0 2685.4 1.3740 5.9104 7.2844
150 111.37 0.001053 1.1593 466.94 2052.7 2519.7 467.11 2226.5 2693.6 1.4336 5.7897 7.2233
175 116.06 0.001057 1.0036 486.8 2038.1 2524.9 486.99 2213.6 2700.6 1.4849 5.6868 7.1717
200 120.23 0.001061 0.8857 504.49 2025.0 2529.5 504.70 2201.9 2706.7 1.5301 5.5970 7.1271
225 124 0.001064 0.7933 520.47 2013.1 2533.6 520.72 2191.3 2712.1 1.5706 5.5173 7.0878
250 127.44 0.001067 0.7187 535.10 2002.1 2537.2 535.37 2181.5 2716.9 1.6072 5.4455 7.0527
275 130.6 0.001070 0.6573 548.59 1991.9 2540.5 548.89 2172.4 2721.3 1.6408 5.3801 7.0209
300 133.55 0.001073 0.6058 561.15 1982.4 2543.6 561.47 2163.8 2725.3 1.6718 5.3201 6.9919
325 136.3 0.001076 0.5620 572.90 1973.5 2546.4 573.25 2155.8 2729.0 1.7006 5.2646 6.9652
350 138.88 0.001079 0.5243 583.95 1965.0 2548.9 584.33 2148.1 2732.4 1.7275 5.2130 6.9405
375 141.32 0.001081 0.4914 594.40 1956.9 2551.3 594.81 2140.8 2735.6 1.7528 5.1647 6.9175
400 143.63 0.001084 0.4625 604.31 1949.3 2553.6 604.74 2133.8 2738.6 1.7766 5.1193 6.8959
450 147.93 0.001088 0.4140 622.77 1934.9 2557.6 623.25 2120.7 2743.9 1.8207 5.0359 6.8565
500 151.86 0.001093 0.3749 639.68 1921.6 2561.2 640.23 2108.5 2748.7 1.8607 4.9606 6.8213
550 155.48 0.001097 0.3427 655.32 1909.2 2564.5 655.93 2097.0 2753.0 1.8973 4.8920 6.7893
600 158.85 0.001101 0.3157 669.90 1897.5 2567.4 670.56 2086.3 2756.8 1.9312 4.8288 6.7600
650 162.01 0.001104 0.2927 683.56 1886.5 2570.1 684.28 2076.0 2760.3 1.9627 4.7703 6.7331
700 164.97 0.001108 0.2729 696.44 1876.1 2572.5 697.22 2066.3 2763.5 1.9922 4.7158 6.7080
750 167.78 0.001112 0.2556 708.64 1866.1 2574.7 709.47 2057.0 2766.4 2.0200 4.6647 6.6847
800 170.43 0.001115 0.2404 720.22 1856.6 2576.8 721.11 2048.0 2769.1 2.0462 4.6166 6.6628
850 172.96 0.001118 0.2270 731.27 1847.4 2578.7 732.22 2039.4 2771.6 2.0710 4.5711 6.6421
900 175.38 0.001121 0.2150 741.83 1838.6 2580.5 742.83 2031.1 2773.9 2.0946 4.5280 6.6226
950 177.69 0.001124 0.2042 751.95 1830.2 2582.1 753.02 2023.1 2776.1 2.1172 4.4869 6.6041
1000 179.91 0.001127 0.19444 761.68 1822.0 2583.6 762.81 2015.3 2778.1 2.1387 4.4478 6.5865
1100 184.09 0.001133 0.17753 780.09 1806.3 2586.4 781.34 2000.4 2781.7 2.1792 4.3744 6.5536
1200 187.99 0.001139 0.16333 797.29 1791.5 2588.8 798.65 1986.2 2784.8 2.2166 4.3067 6.5233
1300 191.64 0.001144 0.15125 813.44 1777.5 2591.0 814.93 1972.7 2787.6 2.2515 4.2438 6.4953
Source:    Courtesy  of ASHRAE,  Handbook  of  Fundamentals, American  Society  of  Heating,  Refrigerating  and Air-Conditioning  Engineers, Atlanta, GA, 1997. With permission.
13.16
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) First, we will find the mass flow rate:

\dot{m}_{a} = \frac{2000  ft^{3}/min  \times 60  min/h}{14.4  ft^{3}/lb_{a}} = 8333  lb_{a}/h

Then, using Equation 13.42, the heat rate can be found since all values on the right-hand side are known:

\dot{Q}_{tot,c} = \dot{m}_{a} [(h_{1}  –  h_{2})  –  h_{liq} (W_{1}  –  W_{2}) ]            (13.42)

\dot{Q}_{tot} = \dot{m}_{a} [(h_{1}  –  h_{2})  –  h_{liq} (W_{1}  –  W_{2}) ]

 

= 8,333  lb_{a}/h \times [(38.4  –  22.2) Btu/lb_{a}

 

– 18.06  Btu/lb_{w} \times (0.013  –  0.0083) lb_{w}/lb_{a} ]

= (134,995  –  707.3) Btu/h = 134.3  kBtu/h(39.3  kW)

= 11.2 tons of cooling

In order to determine the contributions of the sensible and latent coil loads, we locate point “a” as the intersection on the psychrometric chart of a horizontal line drawn from point 2 and the vertical line drawn from point 1. The enthalpy is found to be h_{a} = 33.8  Btu/lb_{a}.
From Equation 13.43,

\dot{Q}_{sen} = \dot{m}_{a}(h_{a}  –  h_{2})             (13.43)

\dot{Q}_{sen} = 8,333  lb_{a}/h \times (33.8  –   22.2) Btu/lb_{a}

= 96,663  Btu/h = 8.06 tons

and from Equation 13.44,

\dot{Q}_{lat} = \dot{m}_{a} (h_{1}  –  h_{a})              (13.44)

\dot{Q}_{lat} = 8,333  lb_{a}/h \times (38.4  –  33.8)  Btu/lb_{a}

= 38,332 Btu/h = 3.19 tons

Finally, the total cooling load on the coil is

\dot{Q}_{tot,c} = \dot{Q}_{sen} + \dot{Q}_{lat} = 134,995  Btu/h = 11.25  tons

It is instructive to compare these values with those from the simplied approach often adopted for hand calculations. The average specic heat of the air water mixture is (Equation 13.25)

c_{p,m} = c_{p,a} + W \cdot c_{p,vap} = 0.24 + \frac{0.444 \times (0.013 + 0.0083)}{2}

 

= 0.245  Btu/(lb_{a} \cdot °F)

Then, from Equation 13.45

\dot{Q}_{sen} = \dot{m}_{a} c_{p,m} (T_{db1}  –  T_{db2})          (13.45)

\dot{Q}_{sen} = 8,333  lb_{a}/h \times 0.245  Btu/lb_{a} \cdot °F

 

\times (100  –  55)  Btu/lb_{a}

= 91,871  Btu/h = 7.66 tons

And from Equation 13.46,

\dot{Q}_{lat} = \dot{m}_{a} h_{vap}  (W_{1}  –  W_{2})          (13.46)

\dot{Q}_{lat} = 8,333  lb_{a}/h \times 1075  Btu/lb_{liq}

 

\times (0.013  –  0.0083)  lb_{w}/lb_{a}

= 42,102  Btu/h = 3.51 tons

Finally,

\dot{Q}_{tot,c} = 91,871 + 42,102 = 133,973  Btu/h = 11.16  tons

Note that the differences in the sensible, latent, and total loads by both methods are −5%, +10%, and less than 1%, respectively.
(b) The cooling coil sensible heat factor is

SHF_{cc} = \frac{\dot{Q}}{\dot{Q}_{sen}  +  \dot{Q}_{lat}} = \frac{8.06}{11.25} = 0.716

We draw a straight line between points 1 and 2 extending till the saturated line (not shown in Figure 13.16). The corresponding dry-bulb temperature T_{3} is the ADP, and this is read off as ADP = T_{db3} = 50°F.
Finally, from Equation 13.48, we find

BP_{cc} = \frac{Air  mass  flow  rate  which  bypasses  coil  surface}{Total  air  mass  flow  rate}

 

= \frac{Segment  2 – 3}{Segment  1 – 3} = \frac{T_{db2}  –  T_{db3}}{T_{db1}  –  T_{db3}}            (13.48)

  BP_{cc} = \frac{T_{db2}  –  T_{db3}}{T_{db1}  –  T_{db3}} = \frac{55  –  50}{100  –  50} = 0.1

Comments
This cooling effect must be provided by the chiller. Note that the amount of energy leaving the coil in the form of liquid condensate for this problem (707 Btu/h as determined earlier) is very small, about 0.5% of the total coil load.

Related Answered Questions