Question 4.1: Derivation of the Frictional Loss Term, hf , for Steady Lami......

Derivation of the Frictional Loss Term, \rm h_f , for Steady Laminar Flow in Smooth Pipes

Concept Assumptions Sketch
• Combine Poiseuille flow solution with extended Bernoulli • As stated, with \rm L >> L_{entrance}
• Poiseuille flow
• Constant cross sectional pipes
• Constant properties and velocity average
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(A) Check entrance length and assume that \rm Re_D < 2,300

• Clearly, for any given data set \rm L_{entrance} = 0.05Re_D \,D should be much less than \rm L_{pipe} .

(B) Poiseuille flow

\vec{\bf v}=\rm [u(r),0,0]~~\text{and}~~\partial p/\partial x=-\frac{\Delta p}{L} = constant

\rm{v}={\frac{1}{\mathrm{A}}}\int\mathrm{u}(\mathrm{r})\;\mathrm{d}\mathrm{A}={\frac{1}{\pi\,\mathrm{r}_{0}^{2}}}\int\mathrm{u}_{\mathrm{max}}\left[1-\left\lgroup {\frac{\mathrm{r}}{\mathrm{r}_{0}}}\right\rgroup ^{2}\right](2\pi\,\mathrm{r}\;\mathrm{d}\mathrm{r})

={\frac{1}{2}}\mathrm{u}_{\mathrm{max}}={\frac{\mathrm{r}_{0}^{2}}{8\mu}}\left\lgroup{\frac{\Delta\mathrm{p}}{\mathrm{L}}}\right\rgroup =\mathrm{Q}/(\pi\,\mathrm{r}_{0}^{2})              (E.4.1.1a)

\tau_{\mathrm{wall}}=\mu\left.{\frac{\mathrm{du}}{\mathrm{dr}}}\right|_{\mathrm{r}=r_{0}}=4\mu\ \mathrm{v}/\ \mathrm{r}_{0}={\frac{\mathrm{r}_{0}}{2}}\left\lgroup \frac{\Delta\mathrm{p}}{ L}\right\rgroup                                   (E.4.1.1b)

(C) Extended Bernoulli equation applied to the pipe centerline from points ➀–➁

\rm \left\lgroup{\frac{\mathrm{p}}{\mathrm{\rho g}}}+{\frac{\mathrm{v}^{2}}{2\mathrm{g}}}+z\right\rgroup _{➀}=\left\lgroup{\frac{\mathrm{p}}{\mathrm{\rho g}}}+{\frac{\mathrm{v}^{2}}{2\mathrm{g}}}+z\right\rgroup _{➁}+{\mathrm{h}_{\mathrm{loss}}}                            (E.4.1.2)

\rm h_{loss}\equiv h_L=h_{\underset{<major>}{friction}}+h_{\underset{<maior>}{form} }                                  (E.4.1.3a)

•With Δz = 0, \rm v_1 = v_2

and \rm h_{form}\approx 0, h_{friction}=h_f=\frac{\Delta p}{\rho g}                          (E.4.1.3b)

(D) Combine (B) and (C) results

• From \begin{array}{c c}\rm{{\mathrm{v}=\frac{r_{0}^{2}}{8\mu}\left\lgroup\frac{\Delta{ p}}{ L}\right\rgroup ;}}&{{\mathrm{~r_{0}=D/2}}}\end{array}                                  (E.4.1.4a)

we have

Δp = 32μ v L/D²                           (E.4.1.4b)

As a result,

\mathrm{h}_{\mathrm{f}}={\frac{32\mathrm{\mu}\;{\mathrm{L}}\;\mathrm{v}}{\rho\mathrm{g}\;\mathrm{D}^{2}}}:=\frac{128\mathrm{\mu}\;{\mathrm{L}}\;\mathrm{Q}}{\pi\;\rho\mathrm{g}\;\mathrm{D}^{4}}                          (E.4.1.5a, b)

Now, defining the friction factor f (Darcy–Weisbach) as:

\mathrm{f}\equiv\frac{8\tau_{\mathrm{w}}}{\mathrm{\rho{\mathrm{{v}}}^{2}}}:=\frac{2\mathrm{D}}{\mathrm{\rho{\mathrm{{v}}}^{2}}}\left\lgroup\frac{\Delta\mathrm{p}}{\mathrm{L}}\right\rgroup                            (E.4.1.6a)

so that

\rm\Delta{ p}={f}~\frac{\rho{ v}^{2}}{2}\left\lgroup\frac{{ L}}{ D}\right\rgroup                            (E.4.1.6b)

and hence we can express the frictional loss also as:

\rm h_{\mathrm{f}}={\frac{\Delta{ p}}{\rho g}}=f{\frac{{ v}^{2}}{2{{{g}}}}}{\left\lgroup{\frac{{ L}}{{ D}}}\right\rgroup }                          (E.4.1.7)

(E) Notes

• With \tau_{ w}=4\mu\,\nu /{r}_{0}\,,\,\,\,f_{\mathrm{laminar}}=\frac{32\mu \nu }{r_{0}\,\rho\,\nu ^{2}}=\frac{64}{\mathrm{Re}_{D}}                        (E.4.1.8, 9)

• From a 1-D force balance for any fully-developed flow regime (see momentum RTT) we obtain (with \rm v_{in} = v_{out} ):

\Sigma \mathrm{F}_{\mathrm{x}}\,=\,\underbrace{\Delta{\rm p}(\pi r_{0}^{2}\,)}_{\mathrm{F_{\mathrm{net,pressure}}}}-\underbrace{\rho\mathrm{g}(\pi r_{0}^{2}\,)\mathrm{L}\,\mathrm{sin}\,\phi}_{\rm W_x}-\underbrace{\tau_{\mathrm{w}}\,(2\pi\mathrm{r}_{0}^{2}\,)}_{\mathrm{F_{viscous}}}                              (E.4.1.10)

so that with L sin \phi = − Δz :

\mathrm{h}_{\mathrm{f}}=\Delta {\rm Z}+{\frac{\Delta\mathrm{p}}{\mathrm{\rho}{\mathrm{g}}}}={\frac{2\tau_{\mathrm{w}}}{\mathrm{\rho}{\mathrm{g}}}}\,{\frac{\mathrm{L}}{\mathrm{r}_{0}}}={\frac{4\tau_{\mathrm{w}}}{\mathrm{\rho}{\mathrm{g}}}}\left\lgroup{\frac{\mathrm{L}}{\mathrm{D}}}\right\rgroup                          (E.4.1.11)

or with \rm f ≡ 8τ_w | ( ρv^2 ) we have again:

\mathrm{h}_{\mathrm{f}}=\mathrm{f}~{\frac{\mathrm{v}^{2}}{2g}}\left\lgroup{\frac{\mathrm{L}}{\mathrm{D}}}\right\rgroup                                  (E.4.1.12)

Graph:

• On a log-log graph, we have the analytical and measured f(\rm Re_D ) function:

Commen:t
• Clearly, the \rm h_f -correlation holds for both laminar and turbulent pipe flows, where

\mathrm{f}_{\mathrm{laminar}}=64\,/{\sqrt{\mathrm{Re_{D}}}}\quad\mathrm{~and~}\quad\mathrm{f}_{\mathrm{turbulent}}=\mathrm{f}\left\lgroup\,\mathrm{Re_{D}}\,,\,{\frac{{\varepsilon }}{\mathrm{D}}}\right\rgroup

Turbulent friction factor values are obtainable, for example, via Eq. (4.5e), or from the Moody chart (see App. B)

\rm f^{-1/2}\approx-1.8\ {log}\bigg[{\frac{6.9}{{Re_{D}}}}+\left\lgroup{\frac{\varepsilon /{D}}{3.7}}\right\rgroup ^{1.11}\bigg]                         (4.5e)

example 4.1

Related Answered Questions

Question: 4.2

Verified Answer:

• A force balance (see Sect. 2.4, Momentum RTT) on...
Question: 4.10

Verified Answer:

Again, the basic problem solution is a combination...