Holooly Plus Logo

Question 7.1: Derivation of the Transition Amplitude (7.5) Derive the tran......

Derivation of the Transition Amplitude (7.5)

Derive the transition amplitude (7.5) from the concept of path integrals.

\left\langle x_{\mathrm{f}}\left(t_{\mathrm{f}}\right) \mid x_{\mathrm{i}}\left(t_{\mathrm{i}}\right)\right\rangle=\mathcal{N} \underset{N \rightarrow \infty}{\lim} \int \prod\limits_{n=1}^{N-1} \mathrm{~d} x\left(t_n\right) \exp \left(\mathrm{i} S\left(\left\{x\left(t_n\right), \dot{x}\left(t_n\right)\right\}\right)\right)    (7.5)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We extract the time dependence of the state vectors

T \equiv\left\langle x_{\mathrm{f}}\left(t_{\mathrm{f}}\right) \mid x\left(t_{\mathrm{i}}\right)\right\rangle=\langle x_{\mathrm{f}}|\exp \left(-\mathrm{i} \hat{H}\left(t_{\mathrm{i}}-t_{\mathrm{f}}\right)\right)| x\rangle .   (1)

In the next step we divide the time interval \left(t_{\mathrm{f}}-t_{\mathrm{i}}\right) into N-1 intermediate time steps with \Delta t=\left(t_{\mathrm{f}}-t_{\mathrm{i}}\right) / N as done before in (7.3):

T=\langle x_{\mathrm{f}} \equiv x_{N}|\underbrace{\exp (-\mathrm{i} \hat{H} \Delta t) \exp (-\mathrm{i} \hat{H} \Delta t) \cdots}_{N \text { times }}| x_{\mathrm{i}} \equiv x_{0}\rangle     (2)

and insert complete sets of eigenstates of the positions between each step

\begin{aligned} T= & \left\langle x_{N}\left|\exp (-\mathrm{i} \hat{H} \Delta t) \int \mathrm{d} x_{N-1}\right| x_{N-1}\right\rangle\left\langle x_{N-1}\right| \exp (-\mathrm{i} \hat{H} \Delta t) \\ & \times \int \mathrm{d} x_{N-2}\left|x_{N-2}\right\rangle\left\langle x_{N-2}|\cdots \exp (-\mathrm{i} \hat{H} \Delta t)| x_{0}\right\rangle . & (3) \end{aligned}

In addition we also insert complete sets of momentum eigenstates into (3)

\begin{aligned} T= & \int \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \cdots \mathrm{d} x_{N-1} \frac{\mathrm{d} p_{0}}{2 \pi} \cdots \frac{\mathrm{d} p_{N-1}}{2 \pi} \\ & \times\left\langle x_{N} \mid p_{N-1}\right\rangle\left\langle p_{N-1}|\exp (-\mathrm{i} \hat{H} \Delta t)| x_{N-1}\right\rangle \\ & \times\left\langle x_{N-1} \mid p_{N-2}\right\rangle\left\langle p_{N-2}|\exp (-\mathrm{i} \hat{H} \Delta t)| x_{N-2}\right\rangle \\ & \times \cdots \times\left\langle p_{0} \mid x_{0}\right\rangle . & (4) \end{aligned}

The main purpose of the whole procedure is that for sufficiently large N and small \Delta t one can expand the exponential

\exp (-\mathrm{i} \hat{H} \Delta t) \sim 1-\mathrm{i} \Delta t \hat{H}.  (5)

In (4) the operator \hat{H} is sandwiched between eigenstates of the position and momentum operator. Thus, using \hat{x}|x\rangle=x|x\rangle and \hat{p}|p\rangle=p|p\rangle we can replace the operators in \hat{H} by their eigenvalues: { }^{4}\langle p|\hat{H}(\hat{p}, \hat{x})| x\rangle=\langle p|H(p, x)| x\rangle= \langle p \mid x\rangle H(p, x). This is the main trick used in the path integral formalism: operators are replaced by c numbers at the cost of (infinitely) many sets of basis states representing the possible paths of the particle. Using this results and \langle x \mid p\rangle=\exp (\mathrm{i} p x) we obtain the expression

\begin{aligned} T= & \int \prod_{n=1}^{N-1} \mathrm{~d} x_{n} \prod_{m=0}^{N-1} \frac{\mathrm{d} p_{m}}{2 \pi} \exp \left(\mathrm{i} \sum_{n=0}^{N-1} p_{n}\left(x_{n+1}-x_{n}\right)\right) \\ & \times \prod_{n=0}^{N-1}\left(1-\mathrm{i} \Delta t H\left(p_{n}, x_{n}\right)\right) \\ \underset{N \to ∞}{=} & \mathcal{N} \int[\mathrm{d} x][\mathrm{d} p] \exp \left(\mathrm{i} \int\limits_{t}^{t^{\prime}} \mathrm{d} \tilde{t}(p \dot{x}-H(p, x))\right) . & (6) \end{aligned}

Equation (6) is the path integral in phase space. Depending on the specific structure of H it is rather straightforward to get rid of the momentum integration if H is quadratic in the momentum, e.g.

H=\frac{p^{2}}{2 m}+U(x).    (7)

Using this expression we see that we can complete the square with respect to the momentum variable in (6):

T=\mathcal{N} \int[\mathrm{d} x][\mathrm{d} p] \exp \left(-\mathrm{i} \int\limits_{t}^{t^{\prime}} \mathrm{d} \tilde{t}\left(\frac{1}{2 m}(p-m \dot{x})^{2}-\frac{m \dot{x}^{2}}{2}+U(x)\right)\right)      (8)

Now one can transform the variable p^{\prime}=p-m \dot{x}, which amounts to a Legendre transformation, and integrate the Gaussian integral of p^{\prime}, which generates a constant that can be absorbed in the normalization factor:

\begin{aligned} & =\mathcal{N}^{\prime} \int[\mathrm{d} x] \exp \left(\mathrm{i} \int\limits_{t}^{t^{\prime}}\left[\mathrm{d} \tilde{t} \frac{m \dot{x}^{2}}{2}-U(x)\right]\right) \\ & =\mathcal{N}^{\prime} \int[\mathrm{d} x] \exp (\mathrm{i} S) . & (9) \end{aligned}

Equation (9) is the path integral formula in the Lagrange formalism (7.5), here in Minkowski space-time.

{ }^{4} Some care has to be taken with the ordering of the operators when the Hamiltonian contains mixed products of position and momentum operators.

Related Answered Questions