Holooly Plus Logo

Question 2.5: Derive expressions for the effective Young’s modulus and Poi......

Derive expressions for the effective Young’s modulus and Poisson’s ratio for a cubic crystal stressed along the [112] direction.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let x = [112]. The axes y and z must be normal to x and each other; for example, y = [11\overline{1]} and z = [1\overline{1}0 ]. The direction cosines between these axes and the cubic axes of the crystal can be found by dot products; for example, l_{1x} = [100]·[112] = (1·1 + 0·1 + 0·2)/(1² + 0² + 0²)(1² + 1² + 2²) = 1/ \sqrt{6} . Forming a table of direction cosines:

For tension along [112], \sigma_{y} =\sigma_{z} = \sigma_{yz} = \sigma_{zx}=\sigma_{xy}=0 , so the only finite stress on the x, y, z axis system is \sigma_{x}. Transforming to the 1, 2, and 3 axes using Equation (1.8),

\sigma_{x^{\prime} x } =l_{x^{\prime} x } l_{x^{\prime} x } \sigma_{x x }+l_{x^{\prime} y } l_{x^{\prime} x } \sigma_{yx}+l_{x^{\prime} z} l_{x^{\prime} x } \sigma_{zx }
+l_{x^{\prime} x } l_{x^{\prime} y } \sigma_{xy }+l_{x^{\prime} y } l_{x^{\prime} y } \sigma_{yy }+l_{x^{\prime} z} l_{x^{\prime} y} \sigma_{zy }
+l_{x^{\prime} x } l_{x^{\prime} z } \sigma_{xz }+l_{x^{\prime} y} l_{x^{\prime} z } \sigma_{yz }+l_{x^{\prime} z} l_{x^{\prime} z } \sigma_{zz}       (1.8a)

\sigma_{x^{\prime} y^{\prime} } =l_{x^{\prime} x } l_{y^{\prime} x } \sigma_{x x }+l_{x^{\prime} y } l_{y^{\prime} x } \sigma_{yx}+l_{x^{\prime} z} l_{y^{\prime} x } \sigma_{zx }
+l_{x^{\prime} x } l_{y^{\prime} y } \sigma_{xy }+l_{x^{\prime} y } l_{y^{\prime} y } \sigma_{yy }+l_{x^{\prime} z} l_{y^{\prime} y} \sigma_{zy }
+l_{x^{\prime} x } l_{y^{\prime} z } \sigma_{xz }+l_{x^{\prime} y} l_{y^{\prime} z } \sigma_{yz }+l_{x^{\prime} z} l_{y^{\prime} z } \sigma_{zz}.       (1.8b)

\sigma_{1} =(1/6)\sigma_{x} \ \ \ \ \ \ \sigma_{23} =(1/3)\sigma_{x}
\sigma_{2} =(1/6)\sigma_{x} \ \ \ \ \ \ \sigma_{31} =(1/3)\sigma_{x}
\sigma_{3} =(2/3)\sigma_{x} \ \ \ \ \ \ \sigma_{12} =(1/6)\sigma_{x}.

From Equation (2.13) for a cubic crystal, the resulting elastic strains are

e_{11}=s_{11}\sigma_{11} +s_{12}\sigma_{22} +s_{13}\sigma_{33}
e_{22}=s_{12}\sigma_{11} +s_{11}\sigma_{22} +s_{12}\sigma_{33}
e_{33}=s_{12}\sigma_{11} +s_{12}\sigma_{22} +s_{11}\sigma_{33}
\gamma_{23} =s_{44} \sigma_{23}
\gamma_{31} =s_{44} \sigma_{31}
\gamma_{12} =s_{44} \sigma_{12}.       (2.13)

e_{1}/ \sigma_{x} =(1/6)s_{11} +(1/6)s_{12}+(2/3)s_{12}=(1/6)s_{11}+(5/6)s_{12},

e_{2}/ \sigma_{x} =(1/6)s_{12} +(1/6)s_{11}+(2/3)s_{12}=(1/6)s_{11}+(5/6)s_{12},

e_{3}/ \sigma_{x} =(1/6)s_{12} +(1/6)s_{12}+(2/3)s_{11}=(2/3)s_{11}+(1/3)s_{12} ,

\gamma_{23} / \sigma_{x}= \gamma_{31} / \sigma_{x}= (1/3)s_{44},          \gamma_{12} / \sigma_{x} = (1/6)s_{44}

Using Equation (1.27), transform these strains onto the x, y, and z axes,

\varepsilon_{x^{\prime} x } =l_{x^{\prime} x^{\prime} } l_{x^{\prime} x^{\prime} } \varepsilon_{x x }+l_{x^{\prime} y } l_{x^{\prime} x^{\prime} } \varepsilon_{yx}+l_{x^{\prime} z} l_{x^{\prime} x^{\prime} } \varepsilon_{zx }
+l_{x^{\prime} x^{\prime} } l_{x^{\prime} y } \varepsilon_{xy }+l_{x^{\prime} y } l_{x^{\prime} y } \varepsilon_{yy }+l_{x^{\prime} z} l_{x^{\prime} y}\varepsilon_{zy }
+l_{x^{\prime} x^{\prime} } l_{x^{\prime} z }\varepsilon_{xz }+l_{x^{\prime} y} l_{x^{\prime} z }\varepsilon_{yz }+l_{x^{\prime} z} l_{x^{\prime} z }\varepsilon_{zz}       (1.27a)

\varepsilon_{x^{\prime} y^{\prime}} =l_{x^{\prime} x^{\prime} } l_{y^{\prime} x^{\prime} } \varepsilon_{x x }+l_{x^{\prime} y } l_{y^{\prime} x } \varepsilon_{yx}+l_{x^{\prime} z} l_{y^{\prime} x } \varepsilon_{zx }
+l_{x^{\prime} x^{\prime} } l_{x^{\prime} y } \varepsilon_{xy }+l_{x^{\prime} y } l_{y^{\prime} y } \varepsilon_{yy }+l_{x^{\prime} z} l_{y^{\prime} y}\varepsilon_{zy }
+l_{x^{\prime} x^{\prime} } l_{y^{\prime} z }\varepsilon_{xz }+l_{x^{\prime} y} l_{y^{\prime} z }\varepsilon_{yz }+l_{x^{\prime} z} l_{y^{\prime} z }\varepsilon_{zz}.       (1.27b)

e_{x} = (1/6)e_{1}+(1/6)e_{2}+(2/3)e_{3}+(1/3)\gamma_{23}+(1/3)\gamma_{31}+(1/6)\gamma_{12}
=[1/6)s_{11}+(1/2)s_{12}+(1/4)s_{44}]/\sigma_{x},

e_{y} = (1/3)e_{1}+(1/3)e_{2}+(1/3)e_{3}-(1/3)\gamma_{23}-(1/3)\gamma_{31}+(1/3)\gamma_{12}
=[(1/3)s_{11}+(2/3)s_{12}+(1/6)s_{44}]/\sigma_{x},

e_{z} = (1/2)e_{1}+(1/2)e_{2}-(1/2)\gamma_{23}=[(1/6)s_{11}+(5/6)s_{12}+(1/6)s_{44}]/\sigma_{x}.

Young’s modulus is E_{[112]} = (e_{x}/\sigma_{x} )^{-1}=\left[(1/6) s_{11} + (1/2) s_{12}+ (1/4) s_{44}\right]^{-1}. There are two values of Poisson’s ratio: \upsilon_{y} = -e_{y}/ e_{x} and \upsilon_{z} = -e_{z}/ e_{x} .

\upsilon_{y} = -e_{y}/ e_{x} =-\left[(1/3)s_{11}+(2/3)s_{12}+(1/6)s_{44}\right]/\left[(1/6)s_{11} + (1/2)s_{12} + (1/4) s_{44}\right]=-(s_{11}+8s_{12}+2s_{44})/(2s_{11}+6s_{12}+3s_{44}),
\upsilon_{z} = -e_{z}/ e_{x} =-\left[(1/6)s_{11}+(5/6)s_{12}+(1/6)s_{44}\right]/\left[(1/6)s_{11} + (1/2) + (1/4) s_{44}\right] = -(2s_{11}+10s_{12}-2s_{44})/(2s_{11}+6s_{12}+3s_{44}) .
x = 112 y = 11\overline{1} z = 1\overline{1}0
1 = 100 1/ \sqrt{6} 1/ \sqrt{3} 1/ \sqrt{2}
2 = 010 1/ \sqrt{6} 1/ \sqrt{3} -1/ \sqrt{2}
3 = 001 2/ \sqrt{6} -1/ \sqrt{3} 0

 

Table 2.2. Elastic compliances (TPa)^{-1}  for various cubic crystals
Material s_{11} s_{12} s_{44}
Cr 3.10 −0.46 10.10
Fe 7.56 −2.78 8.59
Mo 2.90 −0.816 5.21
Nb 6.50 −2.23 35.44
Ta 6.89 −2.57 12.11
W 2.45 −0.69 06.22
Ag 22.26 −9.48 22.03
Al 15.82 −5.73 35.34
Cu 15.25 −6.39 13.23
Ni 7.75 −2.98 8.05
Pb 94.57 −43.56 67.11
Pd 13.63 −5.95 13.94
Pt 7.34 −3.08 13.07
C 1.10 −1.51 1.92
Ge 9.80 −2.68 15.00
Si 7.67 −2.14 12.54
MgO 4.05 −0.94 6.60
MnO 7.19 −2.52 12.66
LiF 11.65 −3.43 15.71
KCl 26.00 −2.85 158.60
NaCl 22.80 −4.66 78.62
ZnS 18.77 −7.24 21.65
InP 16.48 −5.94 21.74
GaAs 11.72 −3.65 16.82
Source: W. Boas and J. K. MacKenzie, Progress in Metal Physics, Vol. 2, Pergamon, 1950.

Related Answered Questions