Question 16.CSGP.103: Derive the van’t Hoff equation given in problem 16.51, using......

Derive the van’t Hoff equation given in problem 16.51, using Eqs.16.12 and 16.15. Note: the d (\overline{ g } / T ) at constant P for each component can be expressed using the relations in Eqs. 16.18 and 16.19.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

\text { Eq. 16.12: } \Delta G ^0= v _{ C } \overline{ g }_{ C }^0+ v _{ D } \overline{ g }_{ D }^0- v _{ A } \overline{ g }_{ A }^0- v _{ B } \overline{ g }_{ B }^0

\text { Eq. 16.15: } \ln K =\Delta G ^0 / \overline{ R } T \quad \text { Eq. 16.19: } \quad \Delta G ^0=\Delta H ^{\circ}- T \Delta S ^0

\begin{aligned}\frac{d \ln K}{d T} & =-\frac{d}{d T}\left(\frac{\Delta G^0}{\bar{R} T}\right)=-\frac{1}{\bar{R} T} \frac{d \Delta G^0}{d T}+\frac{\Delta G^0}{\bar{R} T^2}=\frac{1}{\bar{R} T^2}\left[\Delta G^0-T \frac{d \Delta G^0}{d T}\right] \\& =\frac{1}{\bar{R} T^2}\left[\Delta G^0+T \Delta S^0\right] \quad \text { used Eq.16.19 } \frac{d \bar{g}}{d T}=-\bar{s} \\& =\frac{1}{\bar{R} T^2} \Delta H^0\end{aligned}

Related Answered Questions

Question: 16.CSGP.94

Verified Answer:

1 \,kmol \text { air }\left(0.78 N _2, 0.21...
Question: 16.CSGP.93

Verified Answer:

1 \,kmol \text { air }\left(0.78 \,N _2, 0....
Question: 16.CSGP.104

Verified Answer:

\begin{aligned}& \left( Z _1- Z _2\righ...
Question: 16.CSGP.101

Verified Answer:

Reaction:    2 CO +2 H _2 \Leftrightarrow C...