Question 13.9: Design of a Short-Shoe Drum Brake The brake shown in Figure ......

Design of a Short-Shoe Drum Brake

The brake shown in Figure 13.21 uses a sintered metal lining having design values of f =0.4 and p_{max} =150 psi. Determine:

a. The torque capacity and actuating force.

b. The reaction at pivot A .

Given: a=12 \text { in., } w=3 \text { in., } b=5 \text { in., } c=2 \text { in., } r=4 \text { in., } \phi=30^{\circ} \text {. }

F13.21
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a. From Equation (13.47), we have

F_n=p_{\max }\left[2\left(r \sin \frac{\phi}{2}\right)\right] w        (13.47)

F_n=150\left[2\left(4 \sin \frac{30^{\circ}}{2}\right)\right] 3=931.7  lb

Equation (13.48) yields

T=f F_n r      (13.48)

T=(0.4)(931.7)(4)=1.491  kip \cdot in

Applying Equation (13.49),

F_a=\frac{F_n}{a}(b-f c)       (13.49)

F_a=\frac{931.7(5-0.4 \times 2)}{12}=326.1  lb

b. The conditions of equilibrium of the horizontal (x) and vertical (y) forces give

R_{A x}=931.7(0.4)=372.7  lb \quad R_{A y}=605.6  lb

The resultant radial reactional force is

R_A=\sqrt{372.7^2+605.6^2}=711.1  lb

Related Answered Questions