Question 3.8: Design the GB oscillator in Figure 3.29(a) to oscillate at 1......

Design the GB oscillator in Figure 3.29(a) to oscillate at 10 MHz. The transistor (a 2N3904) has β = 100 and it is to be biased at I_{C} = 1 mA.

التقاط الويب_26-5-2023_141149_
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

With I_{C}=1\;{\mathrm{mA}}, it follows that

b_{i b}={\frac{V_{T}}{I_{C}}}={\frac{25  \times  10^{-3}}{1  \times  10^{-3}}}=25\Omega

and

g_{m}={\frac{I_C}{V_{T}}}={\frac{1}{b_{i b}}}={\frac{1}{25}}=40\ \operatorname{mS}

From (3.65)

C_{2}\geq{\frac{10}{\omega b_{i b}}}                                  (3.65)

 

C_{2}\geq{\frac{10}{\omega b_{i b}}}={\frac{10}{2\pi  \times  10^{7}\ (25)}}=6.36\ \mathrm{nF}

and from (3.64) letting the loop gain be 3, we obtain

\beta(j\omega_{o})A_{v}(j\omega_{o})={\frac{C_{1}  +  C_{2}}{C_{1}}}                                          (3.64)

 

C_{1}={\cfrac{C_{2}}{2}}={\cfrac{6.36\times10^{-9}}{2}}=3.18~{\mathrm{nF}}

Then,

C_{T}=C_{1}\parallel C_{2}=2.12\;\mathrm{nF}

The value of L is

L={\frac{1}{\omega_{o}^{2}\,C_{T}}}={\frac{1}{(2\,\pi  \times  10^{7})^{2}(2.12  \times  10^{-9})}}=0.12~\mu\mathrm{H}

and

R_{P}^{\prime}\approx b_{i b}{\bigg(}{\frac{C_{1}  +  C_{2}}{C_{1}}}{\bigg)}^{2}=25(3)^{2}=225\Omega

Since R_{P}^{\prime}=225\Omega, any R_{L{}} such that R_{L}\gg225\Omega can be used.

The simulation results are shown in Figure 3.29(b) where the fundamental frequency of oscillation is 9.977 MHz. The actual Q point values are: V_{C E}=7.5\mathrm{V} and I_{C}=1.07~{\mathrm{mA}}.

Related Answered Questions

Question: 3.12

Verified Answer:

In the oscillator of Example 3.3 (refer to Figure ...
Question: 3.10

Verified Answer:

The op amp used is a general-purpose op amp, such ...
Question: 3.9

Verified Answer:

The BFS17P BJT was selected for this design. This ...
Question: 3.6

Verified Answer:

Let C_{1}=C_{2}= = 10 nF, so that [...
Question: 3.4

Verified Answer:

A 2N2222 BJT can be used at a bias point of [latex...