Design the GB oscillator in Figure 3.29(a) to oscillate at 10 MHz. The transistor (a 2N3904) has β = 100 and it is to be biased at I_{C} = 1 mA.
With I_{C}=1\;{\mathrm{mA}}, it follows that
b_{i b}={\frac{V_{T}}{I_{C}}}={\frac{25 \times 10^{-3}}{1 \times 10^{-3}}}=25\Omega
and
g_{m}={\frac{I_C}{V_{T}}}={\frac{1}{b_{i b}}}={\frac{1}{25}}=40\ \operatorname{mS}
From (3.65)
C_{2}\geq{\frac{10}{\omega b_{i b}}} (3.65)
C_{2}\geq{\frac{10}{\omega b_{i b}}}={\frac{10}{2\pi \times 10^{7}\ (25)}}=6.36\ \mathrm{nF}
and from (3.64) letting the loop gain be 3, we obtain
\beta(j\omega_{o})A_{v}(j\omega_{o})={\frac{C_{1} + C_{2}}{C_{1}}} (3.64)
C_{1}={\cfrac{C_{2}}{2}}={\cfrac{6.36\times10^{-9}}{2}}=3.18~{\mathrm{nF}}
Then,
C_{T}=C_{1}\parallel C_{2}=2.12\;\mathrm{nF}
The value of L is
L={\frac{1}{\omega_{o}^{2}\,C_{T}}}={\frac{1}{(2\,\pi \times 10^{7})^{2}(2.12 \times 10^{-9})}}=0.12~\mu\mathrm{H}
and
R_{P}^{\prime}\approx b_{i b}{\bigg(}{\frac{C_{1} + C_{2}}{C_{1}}}{\bigg)}^{2}=25(3)^{2}=225\Omega
Since R_{P}^{\prime}=225\Omega, any R_{L{}} such that R_{L}\gg225\Omega can be used.
The simulation results are shown in Figure 3.29(b) where the fundamental frequency of oscillation is 9.977 MHz. The actual Q point values are: V_{C E}=7.5\mathrm{V} and I_{C}=1.07~{\mathrm{mA}}.