Determine the force in each member of the truss and state if the members are in tension or compression.
Joint C.
+\uparrow \Sigma F_{y}=0 ; \quad 259.81 \mathrm{lb}-F_{C D} \sin 30^{\circ}=0
F_{C D}=519.62 \mathrm{lb}=520 \mathrm{lb}(\mathrm{C})
\stackrel{+}{\rightarrow} F_{x}=0 ; \quad(519.62 \mathrm{lb}) \cos 30^{\circ}-F_{B C}=0
F_{B C}=450 \mathrm{lb}(\mathrm{T})
Joint D.
+\nearrow{\Sigma} F_{y^{\prime}}=0 ; \quad F_{B D} \cos 30^{\circ}=0 \quad F_{B D}=0 \quad
+\searrow \Sigma F_{x^{\prime}}=0 ; \quad F_{D E}-519.62 \mathrm{lb}=0
F_{D E}=519.62 \mathrm{lb}=520 \mathrm{lb}(\mathrm{C})
Joint B.
\uparrow \Sigma F_{y}=0 ; \quad F_{B E} \sin \phi=0 \quad F_{B E}=0
\stackrel{+}{\rightarrow} F_{x}=0 ; \quad 450 \mathrm{lb}-F_{A B}=0
F_{A B}=450 \mathrm{lb}(\mathrm{T})
Joint A.
+\uparrow \Sigma F_{y}=0 ; \quad 340.19 \mathrm{lb}-F_{A E}=0
F_{\text {AE }}=340 \mathrm{lb}(\mathrm{C})