Determine the force in members EF, CF, and BC of the truss and state if the members are in tension or compression.
From the geometry of the truss,
\begin{aligned} & \tan \phi=\frac{(9 \mathrm{ft}) \tan 30^{\circ}}{3 \mathrm{ft}}=1.732 \phi=60^{\circ} \\ & ⤹ +\Sigma M_{C}=0 \\ & F_{E F} \sin 30^{\circ}(6 \mathrm{ft})+300 \mathrm{lb}(6 \mathrm{ft})=0 \\ & F_{E F}=-600 \mathrm{lb}=600 \mathrm{lb}(\mathrm{C}) \\ & ⤹ +\Sigma M_{D}=0 \\ & 300 \mathrm{lb}(6 \mathrm{ft})-F_{C F} \sin 60^{\circ}(6 \mathrm{ft})=0 \\ & F_{C F}=346.41 \mathrm{lb}=346 \mathrm{lb}(\mathrm{T}) \\ & ⤹ +\Sigma M_{F}=0 \\ & 300 \mathrm{lb}(9 \mathrm{ft})-300 \mathrm{lb}(3 \mathrm{ft})-F_{B C}(9 \mathrm{ft}) \tan 30^{\circ}=0 \\ & F_{B C}=346.41 \mathrm{lb}=346 \mathrm{lb}(\mathrm{T}) \end{aligned}