Determine the force in members GF, GD, and CD of the truss and state if the members are in tension or compression.
From the geometry of the truss,
\theta=\tan ^{-1}(1 \mathrm{~m} / 2 \mathrm{~m})=26.57^{\circ}
\phi=\tan ^{-1}(3 \mathrm{~m} / 2 \mathrm{~m})=56.31^{\circ}.
The location of O can be found using similar triangles.
\begin{aligned} \frac{1 \mathrm{~m}}{2 \mathrm{~m}} & =\frac{2 \mathrm{~m}}{2 \mathrm{~m}+x} \\ 4 \mathrm{~m} & =2 \mathrm{~m}+x \\ x & =2 \mathrm{~m} \end{aligned}
⤹ +\Sigma M_{G}=0
26.25 \mathrm{kN}(4 \mathrm{~m})-15 \mathrm{kN}(2 \mathrm{~m})-F_{C D}(3 \mathrm{~m})=0
F_{C D}=25 \mathrm{kN}(\mathrm{T})
⤹ +\Sigma M_{D}=0
26.25 \mathrm{kN}(2 \mathrm{~m})-F_{G F} \cos 26.57^{\circ}(2 \mathrm{~m})=0
F_{G F}=29.3 \mathrm{kN}(\mathrm{C})
⤹+\Sigma M_{O}=0 ; 15 \mathrm{kN}(4 \mathrm{~m})-26.25 \mathrm{kN}(2 \mathrm{~m})
-F_{G D} \sin 56.31^{\circ}(4 \mathrm{~m})=0
F_{G D}=2.253 \mathrm{kN}=2.25 \mathrm{kN}(\mathrm{T})