Question 10.CA.2: Determine the longest unsupported length L for which the S10......

Determine the longest unsupported length L for which the S100 × 11.5 rolled-steel compression member AB can safely carry the centric load shown (Fig. 10.29). Assume \sigma_Y = 250 MPa and E = 200 GPa.

10.29
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Appendix E, for an S100 × 11.5 shape,

A=1460  mm ^2 \quad r_x=41.7  mm \quad r_y=14.6  mm

If the 60-kN load is to be safely supported,

\sigma_{\text {all }}=\frac{P}{A}=\frac{60 \times 10^3  N }{1460 \times 10^{-6}  m ^2}=41.1 \times 10^6  Pa

To compute the critical stress \sigma_{ cr } , we start by assuming that L/r is larger than the slenderness specified by Eq. (10.41). We then use Eq. (10.40) with Eq. (10.39) and write

\sigma_e=\frac{\pi^2 E}{(L / r)^2}             (10.39)

\sigma_{ cr }=0.877 \sigma_e           (10.40)

\frac{L}{r}=4.71 \sqrt{\frac{E}{\sigma_Y}}           (10.41)

\begin{aligned} \sigma_{ cr } & =0.877 \sigma_e=0.877 \frac{\pi^2 E}{(L / r)^2} \\ & =0.877 \frac{\pi^2\left(200 \times 10^9 Pa \right)}{(L / r)^2}=\frac{1.731 \times 10^{12} Pa }{(L / r)^2} \end{aligned}

Using this expression in Eq. (10.42),

\sigma_{ all }=\frac{\sigma_{ cr }}{1.67}            (10.42)

=\frac{1.037 \times 10^{12} Pa }{(L / r)^2}

Equating this expression to the required value of \sigma_{\text {all }} gives

\frac{1.037 \times 10^{12} Pa }{(L / r)^2}=41.1 \times 10^6  Pa \quad L / r=158.8

The slenderness ratio from Eq. (10.41) is

\frac{L}{r}=4.71 \sqrt{\frac{200 \times 10^9}{250 \times 10^6}}=133.2

Our assumption that L/r is greater than this slenderness ratio is correct.
Choosing the smaller of the two radii of gyration:

\frac{L}{r_y}=\frac{L}{14.6 \times 10^{-3}  m }=158.8 \quad L=2.32  m

Related Answered Questions

Question: 10.SP.6

Verified Answer:

MODELING and ANALYSIS: Using Eq. (10.57), ...