Determine the magnitudes of the components of the force F = 56 N acting along and perpendicular to line AO.
\mathbf{F}=56 \mathrm{~N}\left(\frac{3}{7} \mathbf{i}-\frac{6}{7} \mathbf{j}+{ }_{7}^{2} \mathbf{k}\right)
=\{24 \mathbf{i}-48 \mathbf{j}+16 \mathbf{k}\} \mathrm{N}
\left(F_{A O}\right)_{\|}=\mathbf{F} \cdot \mathbf{u}_{A O}=(24 \mathbf{i}-48 \mathbf{j}+16 \mathbf{k}) \cdot\left({ }_{7}^{3} \mathbf{i}-\frac{6}{7} \mathbf{j}-\frac{2}{7} \mathbf{k}\right)=46.86 \mathrm{~N}=46.9 \mathrm{~N}
\left(F_{A O}\right)_{\perp}=\sqrt{F^{2}-\left(F_{A O}\right)_{\|}}=\sqrt{(56)^{2}-(46.86)^{2}}
=30.7 \mathrm{~N}