Question F15.5: Determine the minimum dimension b to the nearest mm of the b......

Determine the minimum dimension b to the nearest \mathrm{mm} of the beam’s cross section to safely support the load. The wood has an allowable normal stress of \sigma_{\text {allow }}=12  \mathrm{MPa} and an allowable shear stress of \tau_{\text {allow }}=1.5  \mathrm{MPa}.

f15.5
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

At the supports,

V_{\max }=25 \mathrm{kN}

At the center,

M_{\max }=20 \mathrm{kN} \cdot \mathrm{m}

I=\frac{1}{12}(b)(3 b)^{3}=2.25 b^{4}

\sigma_{\text {allow }}=\frac{M_{\max } c}{I} ; \quad 12\left(10^{6}\right)=\frac{20\left(10^{3}\right)(1.5 b)}{2.25 b^{4}}

b=0.1036 \mathrm{~m}=103.6 \mathrm{~mm}

Use b=104 \mathrm{~mm}

I=2.25\left(0.104^{4}\right)=0.2632\left(10^{-3}\right) \mathrm{m}^{4}

Top half of rectangle,

Q_{\max }=0.75(0.104)[1.5(0.104)(0.104)]=1.2655\left(10^{-3}\right) \mathrm{m}^{3}

\begin{aligned} \tau_{\max } & =\frac{V_{\max } Q_{\max }}{I t}=\frac{25\left(10^{3}\right)\left[1.2655\left(10^{-3}\right)\right]}{\left[0.2632\left(10^{-3}\right)\right](0.104)} \\ & =1.156  \mathrm{MPa}<\tau_{\text {allow }}=1.5  \mathrm{MPa}  (\mathrm{OK}) .\end{aligned}

Related Answered Questions

Question: 15.1

Verified Answer:

Shear and Moment Diagrams. The support reactions h...
Question: F15.3

Verified Answer:

At the supports, V_{\max }=10 \mathrm{kN}[/...
Question: F15.4

Verified Answer:

At the supports, V_{\max }=4.5  \mathrm{kip...
Question: F15.6

Verified Answer:

Within the overhang, V_{\max }=150 \mathrm{...
Question: F15.1

Verified Answer:

At support, \begin{aligned} & V_{\max ...
Question: F15.2

Verified Answer:

At support, V_{\max }=3 \mathrm{kip} \quad ...
Question: 15.3

Verified Answer:

Shear and Moment Diagrams. The reactions on the be...
Question: 15.2

Verified Answer:

Shear and Moment Diagrams. The support reactions a...