Determine the node voltages of the circuit shown in Fig. 1.
The given circuit has three nodes excluding the reference. The general node basis matrix equation of a circuit with three nodes excluding the reference is shown in equation (1).
\left[\begin{array}{lll}G_{11} & G_{12} & G_{13} \\G_{21} & G_{22} & G_{23} \\G_{31} & G_{32} &G_{33}\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}I_{11} \\I_{22} \\I_{33}\end{array}\right] …………(1)
With reference to Fig. 1, the elements of conductance matrix and source current matrix are obtained as shown below :
\begin{array}{l|l|l}G _{11}=\frac{1}{2}+\frac{1}{10}=0.6 & G _{12}= G _{21}=-\frac{1}{10}=-0.1 & I _{11}=4 \\G _{22}=\frac{1}{10}+\frac{1}{4}=0.35 & G _{13}= G _{31}=0 & I _{22}=-3 I _{ x } \\G _{33}=\frac{1}{4}+\frac{1}{5}=0.45 & G _{23}= G _{32}=-\frac{1}{4}=-0.25 & I _{33}=3 I _{ x }\end{array}On substituting the above terms in equation (1), we get,
\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25 \\0 & -0.25 & 0.45\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{r}4 \\-31_x \\31_x\end{array}\right] ……….(2)
Let us express the value of dependent current source in terms of node voltages. With reference to Fig. 1, we can write,
I _{ x }=\frac{ V _3}{5} ; \quad \therefore 3 I _{ x }=3 \times \frac{ V _3}{5}=0.6 V _3 …..(3)
On substituting for 3I_x from equation (3) in equation (2), we get,
\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25 \\0 & -0.25 & 0.45\end{array}\right] \quad\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{r}4 \\-0.6 V_3 \\0.6 V_3\end{array}\right] …..(4)
The terms -0.6 V _3 \text { and }+0.6 V _3 in the source matrix on the right-hand side of equation (4) can be transferred to the left-hand side with the opposite sign as shown in equation (5).
\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25+0.6 \\0 & -0.25 & 0.45-0.6\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}4 \\0 \\0\end{array}\right] …..(5)
\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}4 \\0 \\0\end{array}\right] ….. (6)
To solve the node voltages V _1, V _2 \text { and } V _3 let us define four determinants \Delta^{\prime}, \Delta_1^{\prime}, \Delta_2^{\prime} \text { and } \Delta_3^{\prime} as shown below:
\begin{array}{ll}\Delta^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right| & \Delta_1^{\prime}=\left|\begin{array}{rrr}4 & -0.1 & 0 \\0 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right| \\\Delta_2^{\prime}=\left|\begin{array}{rrr}0.6 & 4 & 0 \\-0.1 & 0 &0.35 \\0 & 0 & -0.15\end{array}\right| &\Delta_3^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 4 \\-0.1 & 0.35 & 0 \\0 & -0.25 & 0\end{array}\right|\end{array}The determinants are evaluated by expanding along the first row and node voltages are solved by Cramer’s rule.
\Delta^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right|=0.6 \times[0.35 \times(-0.15)-(-0.25) \times 0.35]
-(-0.1) \times[-0.1 \times(-0.15)-0]+0
=0.021+0.0015=0.0225
\Delta_2^{\prime}=\left|\begin{array}{rrr}0.6 & 4 & 0 \\-0.1 & 0 & 0.35 \\0 & 0 & -0.15\end{array}\right|=0-4 \times[-0.1 \times(-0.15)-0]+0=-0.06
\Delta_3^{\prime}=\left|\begin{array}{crr}0.6 & -0.1 & 4 \\-0.1 & 0.35 & 0 \\0 & -0.25 & 0\end{array}\right|=0-0+4 \times[-0.1 \times(-0.25)-0]=0.1
Now, the node voltages are,
\begin{aligned}&V_1=\frac{\Delta_1^{\prime}}{\Delta^{\prime}}=\frac{0.14}{0.0225}=6.2222V\\&V_2=\frac{\Delta_2^{\prime}}{\Delta^{\prime}}=\frac{-0.06}{0.0225}=-2.6667 V\\&V_3=\frac{\Delta_3^{\prime}}{\Delta^{\prime}}=\frac{0.1}{0.0225}=4.4444 V\end{aligned}