Question 1.60: Determine the node voltages of the circuit shown in Fig. 1....

Determine the node voltages of the circuit shown in Fig. 1.

1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The given circuit has three nodes excluding the reference. The general node basis matrix equation of a circuit with three nodes excluding the reference is shown in equation (1).

\left[\begin{array}{lll}G_{11} & G_{12} & G_{13} \\G_{21} & G_{22} & G_{23} \\G_{31} & G_{32} &G_{33}\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}I_{11} \\I_{22} \\I_{33}\end{array}\right]                  …………(1)

With reference to Fig. 1, the elements of conductance matrix and source current matrix are obtained as shown below :

\begin{array}{l|l|l}G _{11}=\frac{1}{2}+\frac{1}{10}=0.6 & G _{12}= G _{21}=-\frac{1}{10}=-0.1 & I _{11}=4 \\G _{22}=\frac{1}{10}+\frac{1}{4}=0.35 & G _{13}= G _{31}=0 & I _{22}=-3 I _{ x } \\G _{33}=\frac{1}{4}+\frac{1}{5}=0.45 & G _{23}= G _{32}=-\frac{1}{4}=-0.25 & I _{33}=3 I _{ x }\end{array}

On substituting the above terms in equation (1), we get,

\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25 \\0 & -0.25 & 0.45\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{r}4 \\-31_x \\31_x\end{array}\right]             ……….(2)

Let us express the value of dependent current source in terms of node voltages. With reference to Fig. 1, we can write,

I _{ x }=\frac{ V _3}{5} ; \quad \therefore 3 I _{ x }=3 \times \frac{ V _3}{5}=0.6 V _3                     …..(3)

On substituting for 3I_x from equation (3) in equation (2), we get,

\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25 \\0 & -0.25 & 0.45\end{array}\right] \quad\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{r}4 \\-0.6 V_3 \\0.6 V_3\end{array}\right]                       …..(4)

The terms -0.6 V _3 \text { and }+0.6 V _3 in the source matrix on the right-hand side of equation (4) can be transferred to the left-hand side with the opposite sign as shown in equation (5).

\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & -0.25+0.6 \\0 & -0.25 & 0.45-0.6\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}4 \\0 \\0\end{array}\right]                              …..(5)

\left[\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right]\left[\begin{array}{l}V_1 \\V_2 \\V_3\end{array}\right]=\left[\begin{array}{l}4 \\0 \\0\end{array}\right]                                                                 ….. (6)

To solve the node voltages V _1, V _2 \text { and } V _3 let us define four determinants \Delta^{\prime}, \Delta_1^{\prime}, \Delta_2^{\prime} \text { and } \Delta_3^{\prime} as shown below:

\begin{array}{ll}\Delta^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right| & \Delta_1^{\prime}=\left|\begin{array}{rrr}4 & -0.1 & 0 \\0 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right| \\\Delta_2^{\prime}=\left|\begin{array}{rrr}0.6 & 4 & 0 \\-0.1 & 0 &0.35 \\0 & 0 & -0.15\end{array}\right| &\Delta_3^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 4 \\-0.1 & 0.35 & 0 \\0 & -0.25 & 0\end{array}\right|\end{array}

The determinants are evaluated by expanding along the first row and node voltages are solved by Cramer’s rule.

\Delta^{\prime}=\left|\begin{array}{rrr}0.6 & -0.1 & 0 \\-0.1 & 0.35 & 0.35 \\0 & -0.25 & -0.15\end{array}\right|=0.6 \times[0.35 \times(-0.15)-(-0.25) \times 0.35]

-(-0.1) \times[-0.1 \times(-0.15)-0]+0

=0.021+0.0015=0.0225

\Delta_2^{\prime}=\left|\begin{array}{rrr}0.6 & 4 & 0 \\-0.1 & 0 & 0.35 \\0 & 0 & -0.15\end{array}\right|=0-4 \times[-0.1 \times(-0.15)-0]+0=-0.06

\Delta_3^{\prime}=\left|\begin{array}{crr}0.6 & -0.1 & 4 \\-0.1 & 0.35 & 0 \\0 & -0.25 & 0\end{array}\right|=0-0+4 \times[-0.1 \times(-0.25)-0]=0.1

Now, the node voltages are,

\begin{aligned}&V_1=\frac{\Delta_1^{\prime}}{\Delta^{\prime}}=\frac{0.14}{0.0225}=6.2222V\\&V_2=\frac{\Delta_2^{\prime}}{\Delta^{\prime}}=\frac{-0.06}{0.0225}=-2.6667 V\\&V_3=\frac{\Delta_3^{\prime}}{\Delta^{\prime}}=\frac{0.1}{0.0225}=4.4444 V\end{aligned}

Related Answered Questions

Question: 1.43

Verified Answer:

The graph of the given circuit is shown in Fig. 2....
Question: 1.55

Verified Answer:

Solution of node voltages The given circuit has fo...
Question: 1.56

Verified Answer:

Let the node voltages be V_1 \ and \ V_2[/l...
Question: 1.58

Verified Answer:

Let us convert the 100∠0° V voltage source in seri...
Question: 1.59

Verified Answer:

The graph of the given circuit is shown in Fig. 2....
Question: 1.61

Verified Answer:

The given circuit has four nodes. Let us choose on...
Question: 1.62

Verified Answer:

The given circuit has four nodes. Let us choose on...
Question: 1.13

Verified Answer:

The graph of the given circuit is shown in Fig. 2....