Question 5.8: Determine the normal coordinates for the coupled pendulums o......

Determine the normal coordinates for the coupled pendulums of Example 5.7.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The two linearly independent solutions to Eqs. (5.98) in the case of the coupled pendulums are

(V- ω(s)2\omega ^{2}_{\left(s\right)}T) ϱ(s)=0,\varrho^{\left(s\right)}=0, s = 1, . . . , n . (5.98)

ϱ(1)=α(11),ϱ(2)=β(11),   α,β\varrho^{\left(1\right)}= \alpha \left ( \begin{matrix} 1 \\ 1 \end{matrix} \right ) , \varrho^{\left(2\right)}=\beta \left ( \begin{matrix} 1 \\ -1 \end{matrix} \right ),     \alpha ,\beta ∈ R, (5.142)

which were obtained in Example 5.7. In order to construct the modal matrix, it is necessary that ϱ(1)\varrho^{\left(1\right)} and ϱ(2)\varrho^{\left(2\right)} make up an orthonormal set in the inner product defined by the kinetic energy matrix T = mI – that is,

ϱ(1)T\varrho ^{\left(1\right) ^{T} } T ϱ(1)=1mα2(11)(11)=12mα2=1,\varrho^{\left(1\right)}=1 \Longrightarrow m \alpha^{2} \left ( \begin{matrix} 1 & 1 \end{matrix} \right ) \left ( \begin{matrix} 1 \\ 1 \end{matrix} \right )=1 \Longrightarrow 2m\alpha^{2}=1,   (5.143a)

ϱ(2)T\varrho ^{\left(2\right) ^{T} } T ϱ(2)=1mβ2(11)(11)=12mβ2=1,\varrho^{\left(2\right)}=1 \Longrightarrow m \beta^{2} \left ( \begin{matrix} 1 & -1 \end{matrix} \right ) \left ( \begin{matrix} 1 \\ -1 \end{matrix} \right )=1 \Longrightarrow 2m\beta^{2}=1,   (5.143b)

ϱ(1)T\varrho ^{\left(1\right) ^{T} } T ϱ(2)=0mαβ(11)(11)=0mαβ(11)=0.\varrho^{\left(2\right)}=0 \Longrightarrow m \alpha \beta \left ( \begin{matrix} 1 & 1 \end{matrix} \right ) \left ( \begin{matrix} 1 \\ -1 \end{matrix} \right )=0 \Longrightarrow m \alpha \beta\left ( \begin{matrix} 1 & -1 \end{matrix} \right ) =0.  (5.143c)

The orthogonality condition is identically satisfied and the choice α = β = (2m)1/2^{{−1}/{2}} ensures normalisation of the vectors. An orthonormal set of solutions of (5.98) is

ϱ(1)=12m(11),ϱ(2)=12m(11),\varrho^{\left(1\right)}= \frac{1}{\sqrt{2m} } \left ( \begin{matrix} 1 \\ 1 \end{matrix} \right ), \varrho^{\left(2\right)}= \frac{1}{\sqrt{2m} } \left ( \begin{matrix} 1 \\ -1 \end{matrix} \right ),   (5.144)

which give rise to the modal matrix

A=12m(1 111).A = \frac{1}{\sqrt{2m} } \left ( \begin{matrix} 1  & 1 \\ 1 & -1\end{matrix} \right ). (5.145)

The normal coordinates are

ζ = ATA^{T}Tη =m2m(1 111)(η1 η2),\frac{m}{\sqrt{2m} }\left ( \begin{matrix} 1  & 1 \\ 1 & -1\end{matrix} \right ) \left ( \begin{matrix} \eta_{1}  \\ \eta_{2} \end{matrix} \right ),  (5.146)

that is,

ζ 1 =m2(η1+η2),_{1} =\sqrt{\frac{m}{2} }\left(\eta_{1}+\eta_{2}\right) , ζ 2=m2(η1η2)._{2} =\sqrt{\frac{m}{2} }\left(\eta_{1}-\eta_{2}\right) .(5.147)

The normal mode of frequency ω1_{1}has η1=η2\eta_{1} = \eta_{2}, so only ζ1_{1} oscillates while ζ2_{2} is identically zero; the opposite occurs with the normal mode of frequency ω2_{2}.

Related Answered Questions