Determine the observability of the system, described by
A=\left [ \begin{matrix} 0 & -1 \\ 2 & 3 \end{matrix} \right ] , \ \ C=\left [ \begin{matrix} 1 & -1 \end{matrix} \right ]
(sI − A) = s\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] -\left [ \begin{matrix} 0 & -1 \\ 2 & 3 \end{matrix} \right ] =\left [ \begin{matrix} s & 1 \\ -2 & s-3 \end{matrix} \right ]
The characteristic polynomial of the system, given by the determinant of this matrix, is
s^{2}-3s+2=(s-1)(s-2)
The roots of this equation are the two eigenvalues \{\lambda_{1}=1,\lambda_{2}=2\}. Therefore, the transformation matrix from the last example is
P={\left[\begin{array}{cc}\ \ {2\ 1}\\ {-1\ 1}\end{array}\right]}
The first and second columns are, respectively, the eigenvectors corresponding to eigenvalues 2 and 5.
P ^{−1}AP =\left [ \begin{matrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{matrix} \right ] \left [ \begin{matrix} 3 & 2 \\ 1 & 4 \end{matrix} \right ] \left [ \begin{matrix} 2 & 1 \\ -1 & 1 \end{matrix} \right ] = Λ=\left [ \begin{matrix} 2 & 0 \\ 0 & 5 \end{matrix} \right ]
The rank of the matrix
\lbrack C^{T}\mid A^{T}C^{T}]=\left [ \begin{matrix} 1 & -2 \\ -1 & -4 \end{matrix} \right ]
is 2. Therefore, the system is observable.
C P=[2\ 3]
has no zero entries, and, therefore, the system is observable.