Question 3.3: Determine whether the linear transformation T:P2 → R³, where......

Determine whether the linear transformation T:P_{2}\to R^{3}, where T\big(a+bx+cx^{2}\big)=\left[\begin{array}{c}{{2a-b}}\\ {{a+b-3c}}\\ {{c-a}}\end{array}\right], is one-one, onto, or both or neither.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let T\big(a+b x+c x^{2}\big)=0

\therefore\!\!\left[\begin{array}{c c}{{2a-b}}\\ {{a+b-3c}}\\ {{c-a}}\end{array}\right]=\left[\ \begin{array}{c}{{0}}\\ {{0}}\\ {{0}}\end{array}\ \right].

Comparing both sides,

\therefore2a-b=0,\ \ a+b-3c=0,\ \ c-a=0.

Solving the above equations by Gauss elimination, we get

Augmented matrix = {\left[\begin{array}{c c c | c} &&&\!\! 0 \\[-0.5 em] {2}&{-1}&{0} & \\ {1}&{1}&{-3} & \!\! 0 \\ -1&0&1& \\[-0.5 em] &&&\!\!0 \end{array}\!\!\right]}.

Take R_{2}\leftrightarrow R_{1}

\approx {\left[\begin{array}{c c c | c} &&&\!\! 0 \\[-0.5 em] {1}&{1}&{-3} & \\ {2}&{-1}&{0} & \!\! 0 \\ -1&0&1& \\[-0.5 em] &&&\!\!0 \end{array}\!\!\right]}.

By taking R_{2}\to R_{2}-2R_{1},\;R_{3}\to R_{3}+R_{1}

\approx {\left[\begin{array}{c c c | c} &&&\!\! 0 \\[-0.5 em] {1}&{1}&{-3} & \\ {0}&{-3}&{\ \ 6} & \!\! 0 \\ 0&1&-2& \\[-0.5 em] &&&\!\!0 \end{array}\!\!\right]}

{\frac{-1}{3}}R_{2}

\approx {\left[\begin{array}{c c c | c} &&&\!\! 0 \\[-0.5 em] {1}&{1}&{-3} & \\ {0}&{1}&{-2} & \!\! 0 \\ 0&1&-2& \\[-0.5 em] &&&\!\!0 \end{array}\!\!\right]}

R_{3}\to R_{3}-R_{2}

\approx {\left[\begin{array}{c c c | c} &&&\!\! 0 \\[-0.5 em] {1}&{1}&{-3} & \\ {0}&{1}&{-2} & \!\! 0 \\ 0&0&0 \\[-0.5 em] &&&\!\!0 \end{array}\!\!\right]}.

By taking substitution

a+b-3c=0,\ \ b-2c=0,\ \ c=t\in R

a=t,b=2t,c=t\in R.

Solution set is S=\big\{(a,b,c){=}t(1,2,1)/t\in R\big\}.

The solution is trivial; hence, \ker(T)=\big\{(a,b,c)=t(1,2,1)/t\in R\big\}\neq\left\{0\right\}.

Hence, T is not one-one.

In the next section, we will discuss isomorphism and its example.

Related Answered Questions

Question: 3.1

Verified Answer:

A linear transformation is one-one if and only if ...
Question: 3.5

Verified Answer:

Consider the linear transformation T:P_{3}\...
Question: 3.4

Verified Answer:

Consider the linear transformation T:R^{4}\...
Question: 3.2

Verified Answer:

A linear transformation is one-one if and only if ...