Question 18.11: Determining pH from Kb and Initial [B] Problem Dimethylamine......

Determining pH from K_b and Initial [B]

Problem Dimethylamine, (CH_3)_2NH (see the space-filling model (Fig 18.11)), a key intermediate in detergent manufacture, has a K_b of 5.9×10^{−4}. What is the pH of 1.5 M (CH_3)_2NH?

f18.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Plan We know the initial concentration (1.5 M) and K_b  (5.9×10^{−4}) of (CH_3)_2NH and have to find the pH. The amine reacts with water to form OH^{−}, so we have to find [OH^−] and then calculate [H_3O^+] and pH. We first write the balanced equation and K_b expression. Because K_b  >>  K_w, the [OH^−] from the autoionization of water is negligible, so we disregard it and assume that all the [OH^−] comes from the base reacting with water. Because K_b is small, we assume that the amount of amine reacting, [(CH_3)_2NH]_{\text{reacting}}, can be neglected. We set up a reaction table, make the assumption, and solve for x. Then we check the assumption and convert [OH^−] to [H_3O^+] using K_w; finally, we calculate pH.

Solution Writing the balanced equation and K_b expression:
            (CH_3)_2NH(aq)  +  H_2O(l)  \xrightleftharpoons[]{}  (CH_3)_2NH_2^+(aq)  +  OH^−(aq)
            K_b  =  \frac{[(CH_3)_2NH_2^+][OH^−]}{[(CH_3)_2NH]}

Setting up the reaction table (Table 1), with x  =  [(CH_3)_2NH]_{\text{reacting}}  =  [(CH_3)_2NH_2^+]  =  [OH^−] :

Making the assumption: K_b is small, so
            [(CH_3)_2NH]_{\text{init}}  −  [(CH_3)_2NH]_{\text{reacting}}  =  [(CH_3)_2NH]  ≈  [(CH_3)_2NH]_{\text{init}}
Thus, 1.5 M − x ≈ 1.5 M.
Substituting into the K_b expression and solving for x:

           K_b  =  \frac{[(CH_3)_2NH_2^+][OH^−]}{[(CH_3)_2NH]}  =  5.9×10^{−4}  ≈  \frac{x^2}{1.5}
           x  =  [OH^−]  ≈  3.0×10^{−2}  M

Checking the assumption:
           \frac{3.0×10^{−2}  M}{1.5  M}  ×  100  =  2.0\% (< 5%; assumption is justified.)
Note that the Comment in Sample Problem 18.8 applies in these cases as well:

          \frac{[B]_{\text{init}}}{K_b}  =  \frac{1.5}{5.9×10^{−4}}  =  2.5×10^3  >  400

Calculating pH:
          [H_3O^+]  =  \frac{K_w}{[OH^−]}  =  \frac{1.0×10^{−14}}{3.0×10^{−2}}  =  3.3×10^{−13}  M
          pH  =  −\log  (3.3×10^{−13})  =  12.48

Check The value of x seems reasonable: \sqrt{(∼6×10^{−4})(1.5)}  =  \sqrt{9×10^{−4}}  =  3×10^{−2}. Because (CH_3)_2NH is a weak base, the pH should be several pH units above 7.

Comment Alternatively, we can find the pOH first and then the pH:
          pOH  =  −\log  [OH^−]  =  −\log  (3.0×10^{−2})  =  1.52
          pH  =  14  −  pOH  =  14  −  1.52  =  12.48

Table 1

Concentration (M) \mathbf{(CH_3)_2NH(aq)    +     H_2O(l)        \xrightleftharpoons[]{}      (CH_3)_2NH_2^+(aq)      +        OH^−(aq)}
Initial 1.5                                               —                                   0                                                0
Change −x                                               —                                  +x                                             +x
Equilibrium 1.5 − x                                        —                                   x                                                  x

Related Answered Questions