Question 7.8: Direct Beam Radiation at the Surface of the Earth. Find the ......

Direct Beam Radiation at the Surface of the Earth. Find the direct beam solar radiation normal to the sun’s rays at solar noon on a clear day in Atlanta (latitude 33.7º) on May 21. Use (7.22) and (7.23) to see how closely they approximate Table 7.6.

A \ = \ 1160 \ + \ 75 \ \sin \ \left[\frac{360}{365} \left(n \ – \ 275\right)\right] \quad \left({W}/{m^{2}}\right) (7.22)

k \ = \ 0.174 \ + \ 0.035 \ \sin \ \left[\frac{360}{365} \left(n \ – \ 100\right)\right] (7.23)

TABLE 7.6 Optical Depth k, Apparent Extraterrestrial Flux A, and the Sky
Diffuse Factor C for the 21^{st} Day of Each Month
Month: Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
A (W/m^{2}): 1230 1215 1186 1136 1104 1088 1085 1107 1151 1192 1221 1233
k: 0.142 0.144 0.156 0.180 0.196 0.205 0.207 0.201 0.177 0.160 0.149 0.142
C: 0.058 0.060 0.071 0.097 0.121 0.134 0.136 0.122 0.092 0.073 0.063 0.057
Source: ASHRAE (1993).
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using Table 7.1 to help, May 21 is day number 141. From (7.22), the apparent extraterrestrial flux, A, is

\begin{matrix} A & = \ 1160 \ + \ 75 \ \sin \ \left[\frac{360}{365} \left(n \ – \ 275\right)\right] \ = \ 1160 \ + \ 75 \ \sin \ \left[\frac{360}{365} \left(141 \ – \ 275\right)\right] \\ & = \ 1104 \ {W}/{m^{2}} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ \ \end{matrix}

(which agrees with Table 7.6).

From (7.23), the optical depth is

\begin{matrix} k & = \ 0.174 \ + \ 0.035 \ \sin \ \left[\frac{360}{365} \left(n \ – \ 100\right)\right] \quad \quad \quad \quad \quad \\ & = \ 0.174 \ + \ 0.035 \ \sin \ \left[\frac{360}{365} \left(141 \ – \ 100\right)\right] \ = \ 0.197 \end{matrix}

(which is very close to the value given in Table 7.6).

From Table 7.2, on May 21 solar declination is 20.1º, so from (7.7) the altitude angle of the sun at solar noon is

\beta _{N} \ = \ 90º \ − \ L \ + \ \delta \ = \ 90 \ − \ 33.7 \ − \ 20.1 \ = \ 76.4º

The air mass ratio (7.4) is

m \ = \ \frac{1}{\sin \ \beta} \ = \ \frac{1}{\sin \left(76.4º\right)} \ = \ 1.029

Finally, using (7.21) the predicted value of clear sky beam radiation at the earth’s surface is

I_{B} \ = \ Ae^{−km} \ = \ 1104 \ e^{− 0.197\times 1.029} \ = \ 902 \ {W}/{m^{2}}
TABLE 7.1 Day Numbers for the First Day of Each
Month
January n = 1 July n = 182
February n = 32 August n = 213
March n = 60 September n = 244
April n = 91 October n = 274
May n = 121 November n = 305
June n = 152 December n = 335
TABLE 7.2 Solar Declination δ for the 21^{st} Day of Each Month (degrees)
Month: Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
δ: −20.1 −11.2 0.0 11.6 20.1 23.4 20.4 11.8 0.0 −11.8 −20.4 −23.4

Related Answered Questions

Question: 7.5

Verified Answer:

From Table 7.1, July 1 is day number n = 182. Usin...