Draw the logic circuit for the Boolean expression expressed in two forms. Also write the truth table
Y=\bar{A} \bar{C}+B \bar{C} (i)
and \mathrm{Y}=\overline{\mathrm{C}}(\overline{\mathrm{A}}+\mathrm{B}) (ii)
for form (i)
for form (ii)
The truth table for
\begin{aligned} \mathrm{Y} & =\overline{\mathrm{A}} \overline{\mathrm{C}}+\mathrm{B} \overline{\mathrm{C}} \\ & =\mathrm{P}+\mathrm{Q} \end{aligned}is shown as
\begin{array}{|llllll|} \hline \text { A } & \text { B } & \text { C } & \text { P } & \text { Q } & \text { Y } \\ \hline 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \end{array}