Holooly Plus Logo

Question 10.3: Establish the stage (headwater level)–discharge relationship......

Establish the stage (headwater level)–discharge relationship for a concrete rectangular box culvert, using the following data: width = 1.2 m; height = 0.6 m; length = 30 m; slope = 1 in 1000; Manning’s n = 0.013; square-edged entrance conditions; free jet outlet flow; range of head water level for investigation =0–3 m; neglect the velocity of approach.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. H/D ≤1.2. For H<0.6 m, free flow open-channel conditions prevail. Referring to Fig. 10.6 and assuming that a steep slope entry gives entrance control, i.e. the depth at the inlet is critical, for H = 0.2 m, ignoring entry loss y_{ c }=(2 / 3) \times 0.2=0.133\, m \text { and } V_{ c }=1.142 \,m s ^{-1} . This gives the critical slope (V n)^2 / R^{4 / 3}=0.00424 . Therefore the slope of the culvert is mild and hence subcritical flow analysis gives the following results:

\begin{aligned} Q & =1.2 y_0\left[1.2 y_0 /\left(1.2+2 y_0\right)\right]^{2 / 3}(0.001)^{1 / 2} / 0.013 \\ & =2.92 y_0\left[1.2 y_0 /\left(1.2+2 y_0\right)\right] ^{2 / 3} ; \end{aligned}                (i)

Table 1

At the inlet over a short reach,

H=y_0+V^2 / 2 g+K_{ e } V^2 / 2 g  .                        (ii)

The entrance loss coefficient, K_{ e } , is as follows:
for a square-edged entry,            0.5;
for a flared entry,                          0.25;
for a rounded entry,                     0.05;

Table 2

2. H/D≥1.2.
(a) For orifice flow
Q=C_{ d }(1.2 \times 0.6)[2 g(H-D / 2)]^{1 / 2} .               (iii)
With C_{ d } = 0.62 the following results are obtained:

Table 3

(b) For pipe flow the energy equation gives

H+S_0 L=D+h_{ L }

where

h_{ L }=K_{ e } V^2 / 2 g+(V n)^2 L / R^{4 / 3}+V^2 / 2 g

Thus

Q=2.08(H-0.57)^{1 / 2}                   (iv)

Table 4

During rising stages the barrel flows full from H = 0.72 m and during falling stages the flow becomes free-surface flow when H = 0.691 m.
The following table summarizes the results:

Table 5

Table 1

y_0(m) Q\left(m^3 s^{-1}\right) (equation (i)) y_c(m)
0.2 0.165 0.124
0.4 0.451 0.243
0.6 (=D) 0.785 0.352

Table 2

y_0(m) H (m) (equation (ii)) Q\left(m^3 s^{-1}\right)
0.2 0.165 0.165
0.4 0.451 0.451
0.6 0.691 0.785
orifice ←> 0.6←(1.2 D = ) 0.72  \longrightarrow 0.817 (by interpolation)

Table 3

H(m) Q\left(m^3 s^{-1}\right) y_{0}  (m) (equation (i))
0.72 1.29 > 0.6 → no orifice flow exists

Table 4

    H (m)                                        Q\left(m^3 s^{-1}\right) (equation (iv))
y _0 \simeq 0.6(\text { equation }( i ) \leftarrow

Table 5

H (m) Q\left(m^3 s^{-1}\right) Type of flow
Rising stages
0.236 0.165 Open channel
0.467 0.451 Open channel
0.691 0.785 Open channel
0.720 0.805 Pipe flow
1.00 1.364 Pipe flow
2.00 2.487 Pipe flow
3.00 3.242 Pipe flow
Falling stages
2.00 2.487 Pipe flow
1.00 1.364 Pipe flow
0.72 0.805 Pipe flow
0.691 0.723 Pipe flow
0.691 0.785 Open channel
0.467 0.451 Open channel
0.236 0.165 Open channel
10.6

Related Answered Questions

Question: 10.4

Verified Answer:

Rising stages are as follows. 1. For the open chan...
Question: 10.1

Verified Answer:

DRAINAGE WATERWAY Perimeter P=4.75 Q^{1 / ...