Question 7.12: Estimation of the Time Required to Cool a Decorative Plastic......

Estimation of the Time Required to Cool a Decorative Plastic Film on Copper Sphere to a Given Temperature using Lumped Capacitance Theory
The decorative plastic film on copper sphere 10mm in diameter is cured in an oven at 75°𝐢. After removal from oven, the sphere is exposed to an air stream at 10m/s and 23°𝐢. Estimate the time taken to cool the sphere to 35°𝐢 using lumped capacitance theory.
Use the following correlation:

N u=2+\left[0.4(R e)^{0.5}+0.06(R e)^{2/3}\right](p{r})^{0.4}\left[{\frac{\mu_{a}}{\mu_{s}}}\right]^{0.25}

For determination of correlation coefficient β„Ž, use the following properties of air and copper:
For copper: 𝜌 = 8933π‘˜π‘”/π‘šΒ³; π‘˜ = 400𝑀/π‘š 𝐾; c_{p} = 380𝐽/π‘˜π‘”Β°πΆ
For air at 23°𝐢: \mu_{a}=\mathrm{18.6}\times\mathrm{10^{-6}}N s/{m^{2}},\nu=\mathrm{15.36}\times\mathrm{10^{-6}}m^{2}\mathrm{/s}

π‘˜ = 0.0258𝑀/π‘š 𝐾, π‘π‘Ÿ = 0.709, and \mu_{s}=\mathrm{19.7}\times\mathrm{10^{-6}}Ns/{m^{2}},Β  at 35°𝐢

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
{d=10m m=0.01m{\mathrm;\ T}_{o}=75^{\circ}C;\ v = 10m/s; \ T_{\infty}=23^{\circ}C;\ T(t)=35^{\circ}C;}

 

Time taken to cool the sphere, 𝜏 = ?

 

R e={\frac{v\;d}{\nu}}={\frac{10\times0.01}{15.36\times10^{-6}}}=6510

 

{ N}u=2+\left[0.4(6510)^{0.5}+0.06(6510)^{2/3}\right]\times(0.709)^{0.4}\times\left[\frac{18.16\times10^{-6}}{19.78\times10^{-6}}\right]^{0.25}

 

=2+[32.27+20.92]\times{0.87\times 0.979}=47.3

 

orΒ  N{{\mathit{u}}}=\frac{h\;d}{k}=47.3

 

∴  h=\frac{k}{d}N u=\frac{0.0258}{0.01}\times47.3=\,122{w/m}^{2^{o}}C

 

The time taken to cool from 75°𝐢 to 35°𝐢 may be found from the following relation:

 

\frac{\theta}{\theta_{o}}=\frac{T(t)-T_{\infty}}{T_{o}-T_{\infty}}=e^{βˆ’π΅π‘–Γ—πΉπ‘œ}

 

B i={\frac{h\,L}{K}}

 

The characteristic length of a sphere, L\,=\,\frac{r}{3}=\frac{0.005}{3}m

 

B i=\frac{h \ L}{\mathit{k}}=\frac{122\times0.005}{3\times400}=5.083\times10^{-4}

 

Since, 𝐡𝑖 β‰ͺ 0.1 , so we can use the lumped capacitance theory to solve this problem.

 

F o=\frac{k}{\rho c_{P}L^{2}}\cdot\tau=\frac{40}{893\times380\times\left(\frac{0.005}{3}\right)^{2}}\cdot\tau=42.421\,\,\tau

 

B i\times F o=5.083\times10^{-4}\times42.421\,\tau=0.0216\,\tau

 

\frac{\theta}{\theta_{o}}=\frac{35-23}{75-23}=e^{-0.0216\;\tau}

 

0.2308=e^{-0.0216\,\tau}

 

\ln0.2308=-0.0216\tau\ \mathrm{ln}\,e

 

\tau=\frac{\mathrm{ln}\,0.2308}{-0.0216}=67.9 ≃ \,68\,s

Related Answered Questions