Question 8.3.3: Evaluation of ΔH Using Heat Capacities and Tabulated Enthalp......

Evaluation of Δ\dot{H} Using Heat Capacities and Tabulated Enthalpies
Fifteen kmol/min of air is cooled from 430°C to 100°C. Calculate the required heat removal rate using (1) heat capacity formulas from Table B.2, (2) specific enthalpies from Table B.8, and (3) the Enthalpy function of APEx.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

air(g, 430°C) → air(g, 100°C)

With Δ\dot{E}_{k}, Δ\dot{E}_{p}, and \dot{W}_{s} deleted, the energy balance is

\dot{Q}=\Delta \dot{H} = \dot{n}_{air }\hat{H}_{air,out}  –  \dot{n}_{air }\hat{H}_{air,in} = \dot{n}_{air }\Delta \hat{H}

Assume ideal-gas behavior, so that pressure changes (if there are any) do not affect Δ\hat{H}.

1. The hard way. Integrate the heat capacity formula in Table B.2.

\begin{matrix} \Delta \hat{H} \left(\frac{kJ}{mol} \right) = \int_{430°C}^{100°C}{C_{p}(T)  dT} \\\\ =\int_{430°C}^{100°C} [0.02894 + 0.4147 \times 10^{-5}T + 0.3191 \times 10^{-8}T^{2}  –  1.965 \times 10^{-12} T^{3}] dT \\\\ = \left. \Large{[} \right. 0.02894 (100  –  430) +\frac{0.4147 \times 10^{-5}}{2} (100^{2}  –  430^{2}) \\\\ + \frac{0.3191\times 10^{-8} }{3} (100^{3}  –  430^{3}) –  \frac{1.965 \times 10^{-12}}{4} (100^{4}  –  430^{4}) \left. \Large{]} \right.  kJ/mol\\\\ =(-  9.5502  –  0.3627  –  0.0835+0.0167)  kJ/mol = –  9.98  kJ/mol\end{matrix}

2. The easy way. Use tabulated enthalpies from Table B.8.
\hat{H} for air at 100°C can be read directly from Table B.8 and \hat{H} at 430°C can be estimated by linear interpolation from the values at 400°C (11.24 kJ/mol) and 500°C (14.37 kJ/mol).

\hat{H}(100°C) = 2.19  kJ/mol\\ \hat{H}(430°C) = [ 11.24 + 0.30(14.37  –  11.24)]  kJ/mol = 12.17  kJ/mol \\ \left. \Large{\Downarrow} \right.\\ \Delta \hat{H} = (2.19  –  12.17)  kJ/mol= –  9.98  kJ/mol

3. The easiest way. In a spreadsheet cell, insert =Enthalpy(“air”,430,100). The value – 9.98 (in kJ/mol) will be returned. In using the spreadsheet, it is absolutely essential to keep track of units by adding explicit notation where appropriate; otherwise the probability of getting units wrong increases substantially.
Whichever way Δ\hat{H} is determined

\begin{matrix}\dot{Q}=\Delta \dot{H} = \dot{n}\Delta\hat{H} = \begin{array}{c|c|c|c|c} 15.0  kmol &10^{3}  mol &-  9.98  kJ &1  min &1  kW\\ \hline min &1  kmol& mol &60  s &1  kJ/s\end{array} = \boxed{-  2500  kW }\end{matrix}

Related Answered Questions