Holooly Plus Logo

Question 7.E.3.9: Explain why e^A+B = e^A e^B whenever AB = BA. Give an exampl......

Explain why e^{A+B} = e^A e^B whenever AB = BA. Give an example to show that e^{A+B},  e^A e^B, and e^B e^A all can differ when AB ≠ BA.

Hint: Exercise 7.2.16 can be used for the diagonalizable case. For the general case, consider F(t) = e^{(A+B)t}  −  e^{At} e^{Bt}  and  F^′(t).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

If A and B are diagonalizable with AB = BA, Exercise 7.2.16 insures A and B can be simultaneously diagonalized. If P^{−1}AP=D_A = diag  (λ_1,  λ_2,  .  .  .  ,  λ_n) and P^{−1}BP = D_B = diag  (μ_1,  μ_2,  .  .  .  ,  μ_n), then A + B = P(D_A +D_B) P^{−1}, so

e^{A+B} = P (e^{D_{A} + D_{B}}) P^{-1} = P \begin{pmatrix}e^{λ_{1}+μ_{1}}& 0& · · ·& 0\\ 0 &e^{λ_{2}+μ_{2}}& · · ·& 0\\ \vdots&\vdots&\ddots&\vdots\\ 0 &0 &· · ·& e^{λ_{n}+μ_{n}}\end{pmatrix} P^{-1}

= P \begin{pmatrix}e^{λ_{1}}& 0& · · · &0\\ 0& e^{λ_{2}}& · · ·& 0\\ \vdots&\vdots&\ddots&\vdots\\ 0 &0& . . . &e^{λ_{n}}\end{pmatrix} P^{-1}P \begin{pmatrix}e^{μ_{1}}&0  &· · ·& 0\\ 0 &e^{μ_{2}}& · · ·& 0\\ \vdots&\vdots&\ddots&\vdots\\ 0 &0 &· · ·& e^{μ_{n}}\end{pmatrix} P^{-1}

= e^A e^B.

In general, the same brute force multiplication of scalar series that yields

e^{x+y} = \sum\limits_{n=0}^{∞} \frac{(x + y)^n}{n!} = \left(\sum\limits_{n=0}^{∞} \frac{x^n}{n!}\right) \left(\sum\limits_{n=0}^{∞} \frac{y^n}{n!}\right) = e^x e^y

holds for matrix series when AB = BA, but this is quite messy. A more elegant approach is to set F(t) = e^{At+Bt}  −  e^{At} e^{Bt} and note that F^′(t) = 0 for all t when AB = BA, so F(t) must be a constant matrix for all t. Since F(0) = 0, it follows that e^{(A+B)t} = e^{At} e^{Bt} for all t. To see that e^{A+B},  e^A e^B,  and  e^B e^A can be different when AB ≠ BA, consider A = \begin{pmatrix}1&0\\0&0\end{pmatrix}and B = \begin{pmatrix}0&1\\1&0\end{pmatrix}.

Related Answered Questions

Question: 7.2.7

Verified Answer:

This is the diagonalizable matrix from Example 7.2...
Question: 7.3.3

Verified Answer:

Solution 1: The characteristic equation for A is[l...
Question: 7.E.3.16

Verified Answer:

(a) The “vanilla” QR iteration fails to converge. ...
Question: 7.E.3.13

Verified Answer:

The dominant eigenvalue is λ_1 = 4,...
Question: 7.E.3.10

Verified Answer:

The infinite series representation of e^A[/...
Question: 7.E.3.8

Verified Answer:

When A is diagonalizable, (7.3.11) insures f(A) = ...
Question: 7.E.3.6

Verified Answer:

If \{λ_1,  λ_2,  .  .  .  ,  λ_n\} ...