Holooly Plus Logo

Question 4.7: Feynman Parametrization Prove the most general form of the F......

Feynman Parametrization

Prove the most general form of the Feynman parametrization,

\prod\limits_{i=1}^{n} \frac{1}{a_{i}^{A_{i}}}=\frac{\Gamma(A)}{\prod_{i=1}^{n} \Gamma\left(A_{i}\right)} \int_{0}^{1} \frac{\prod_{i=1}^{n} \mathrm{~d} x_{i} x_{i}^{A_{i}-1}}{\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{A}} \delta\left(1-\sum\limits_{i=1}^{n} x_{i}\right)     (1)

with A=\sum_{i=1}^{n} A_{i} by means of mathematical induction. The a_{i}(i=1,2, \ldots, n) are arbitrary complex numbers.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

To prove (1) we start with the simple formula

\frac{1}{a \cdot b}=\int\limits_{0}^{1} \frac{\mathrm{d} x}{(a x-b(1-x))^{2}},   (2)

which is obtained by observing that

\frac{1}{a \cdot b}=\frac{1}{b-a}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{b-a} \int\limits_{a}^{b} \frac{\mathrm{d} z}{z^{2}}.       (3)

Substituting z=a x+b(1-x) one obtains (2). Equation (2) can be further generalized to arbitrary powers by taking derivatives

\frac{\partial^{A}}{\partial a^{A}} \frac{\partial^{B}}{\partial b^{B}}  (4)

on both sides so that

\begin{aligned} \frac{1}{a^{A} \cdot b^{B}} & =\frac{\Gamma(A+B)}{\Gamma(A) \Gamma(B)} \int\limits_{0}^{1} \mathrm{~d} x \frac{x^{A-1}(a-x)^{B-1}}{(a x+b(1-x))^{A+B}} \\ & =\frac{\Gamma(A+B)}{\Gamma(A) \Gamma(B)} \int\limits_{0}^{1} \mathrm{~d} x \mathrm{~d} y \frac{x^{A-1} y^{B-1}}{(a x+b y)^{A+B}} \delta(1-x-y) . & (5) \end{aligned}

Thus we have proven (1) for n=2. Now we assume that the formula (1) holds for n and prove that it is also valid for n+1. Let us start with the expression

\frac{1}{a_{n+1}^{A_{n+1}}} \prod_{i=1}^{n} \frac{1}{a_{i}^{A_{i}}}=\frac{\Gamma(A)}{\prod_{i=1}^{n} \Gamma\left(A_{i}\right)} \int_{0}^{1} \frac{\prod_{i=1}^{n} \mathrm{~d} x_{i} x_{i}^{A_{i}-1}}{\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{A}} \delta\left(1-\sum\limits_{i=1}^{n} x_{i}\right) \frac{1}{a_{n+1}^{A_{n+1}}},        (6)

where we multiplied (1) on both sides by 1 / a_{n+1}^{A_{n+1}}. Applying (5) we can rewrite (6) to obtain

\begin{aligned} \prod_{i=1}^{n} \frac{1}{a_{i}^{A_{i}}} & =\frac{\Gamma(A)}{\prod_{i=1}^{n} \Gamma\left(A_{i}\right)} \int\limits_{0}^{1} \prod_{i=1}^{n} \mathrm{~d} x_{i} x_{i}^{A_{i}-1} \delta\left(1-\sum\limits_{i=1}^{n} x_{i}\right) \frac{\Gamma\left(A+A_{n+1}\right)}{\Gamma(A) \Gamma\left(A_{n+1}\right)} \\ & \times \int\limits_{0}^{1} \mathrm{~d} x_{n+1} \mathrm{~d} y \frac{y^{A-1} x_{n+1}^{A_{n+1}-1}}{\left(y \sum_{i=1}^{n} a_{i} x_{i}+a_{n+1} x_{n+1}\right)^{A+A_{n+1}}} \delta\left(1-y-x_{n+1}\right) . & (7) \end{aligned}

Now we change variables \tilde{x}_{i}=y x_{i}(i=1,2, \ldots n) in the above equation and perform the y integration. After replacing \tilde{x}_{i} by x_{i} we obtain

\prod\limits_{i=1}^{n+1} \frac{1}{a_{i}^{A_{i}}}=\frac{\Gamma\left(A+A_{n+1}\right)}{\prod_{i=1}^{n+1} \Gamma\left(A_{i}\right)} \int\limits_{0}^{1} \frac{\prod_{i=1}^{n+1} \mathrm{~d} x_{i} x_{i}^{A_{i}-1}}{\left(\sum_{i=1}^{n+1} a_{i} x_{i}\right)^{A+A_{n+1}}} \delta\left(1-\sum\limits_{i=1}^{n+1} x_{i}\right)         (8)

This completes the proof of (1).

Related Answered Questions

Question: 4.5

Verified Answer:

Omitting the subscript " E " in thi...