Figure 5.23 shows a voltage waveform of a 0.5 H inductor. Determine the current in the inductor.
v(t)=102t=5t Vv(t)={\frac{10}{2}}t=5t \ {V}v(t)=210t=5t V 0<t<20\lt t\lt 20<t<2 (5.164)
ν(t)=10 V2<t<4\nu(t)=10\,\mathrm{V}\quad2\lt t\lt 4ν(t)=10V2<t<4 (5.165)
i=1L∫ν dt=10.5[∫025tdt+∫2410dt]i=\frac{1}{L}\int\nu\,\mathrm{d}t=\frac{1}{0.5}\left[\int\limits_{0}^{2}{5tdt}+\int\limits_{2}^{4}{10dt} \right]i=L1∫νdt=0.51[0∫25tdt+2∫410dt] (5.166)
i=10.5[5×(4−0)2+10(4−2)]=60 Ai=\frac{1}{0.5}\left[\frac{5\times(4-0)}{2}+10(4-2)\right]=60\,\mathrm{A}i=0.51[25×(4−0)+10(4−2)]=60A (5.167)