Figure 5.46 shows a circuit with resistance, capacitance and switch. Calculate the current in the circuit when the switch is closed at t = 0.
At t= 0, the current in the circuit is,
2i+4{\frac{\mathrm{d}i}{\mathrm{d}t}}=\mathrm{e}^{-2t} (5.283)
{\frac{1}{4}}i+{\frac{\mathrm{d}i}{\mathrm{d}t}}={\frac{1}{4}}\mathrm{e}^{-2t} (5.284)
The auxiliary solution is,
i_{a}=k_{1}\mathrm{e}^{-0.25t} (5.285)
Considering the particular solution i_{p}=A\mathrm{e}^{-2t} and Eq. (5.284) becomes,
\frac{1}{4}A\mathrm{e}^{-2t}+A(-2)\mathrm{e}^{-2t}=\frac{1}{4}\mathrm{e}^{-2t} (5.286)
A=-{\frac{1}{7}} (5.287)
The complete solution is,
i(t)=k_{1}\mathrm{e}^{-0.25t}-{\frac{1}{7}}\mathrm{e}^{-2t} (5.288)
At t = 0, the initial current in an inductor is zero, i.e. i(0)=0 and Eq. (5.288) becomes,
i(0)=0=k_{1}-{\frac{1}{7}} (5.289)
k_{1}={\frac{1}{7}} (5.290)
The final expression of the current is,
i(t)=\frac{1}{7}\bigl(\mathrm{e}^{-0.25t}-\mathrm{e}^{-2t}\bigr)\,\mathrm{A} (5.291)