Find
(a) ∫sin2tcost dt
(b) ∫sinmtsinnt dt, where m and n are constants with m ≠ n
(a) Using the identities in Table 3.1 we find
2sinAcosB=sin(A+B)+sin(A−B)
hence sin2tcost can be written 21(sin3t+sint). Therefore,
∫sin2tcost dt=∫21(sin3t+sint)dt=21(3−cos3t−cost)+c=−61cos3t−21cost+c
(b) Using the identity 2sinAsinB=cos(A−B)−cos(A+B), we find
sinmtsinnt=21{cos(m−n)t−cos(m+n)t}
Therefore,
Table 3.1 Common trigonometric identities. |
tanA=cosAsinAsin(A±B)=sinAcosB±sinBcosAcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=1∓tanAtanBtanA±tanB2sinAcosB=sin(A+B)+sin(A−B)2cosAcosB=cos(A+B)+cos(A−B)2sinAsinB=cos(A−B)−cos(A+B)sin2A+cos2A=11+cot2A=cosec2Atan2A+1=sec2Acos2A=1−2sin2A=2cos2A−1=cos2A−sin2Asin2A=2sin Acos Asin2A=21−cos2Acos2A=21+cos2A |
Note: sin2A is the notation used for (sinA)2. Similarly cos2A means (cosA)2. |