Question 13.6: Find (a) ∫ sin 2t cos t dt (b) ∫ sin mt sin nt dt, where m a......

Find

(a)  sin2tcost dt\int \sin 2 t \cos t \mathrm{~d} t

(b)  sinmtsinnt dt\int \sin m t \sin n t \mathrm{~d} t,  where m and n are constants with m ≠ n

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Using the identities in Table 3.1 we find

2sinAcosB=sin(A+B)+sin(AB)2 \sin A \cos B=\sin (A+B)+\sin (A-B)

hence  sin2tcost\sin 2 t \cos t  can be written  12(sin3t+sint)\frac{1}{2}(\sin 3 t+\sin t).  Therefore,

sin2tcost dt=12(sin3t+sint)dt=12(cos3t3cost)+c=16cos3t12cost+c\begin{aligned}\int \sin 2 t \cos t \mathrm{~d} t & =\int \frac{1}{2}(\sin 3 t+\sin t) \mathrm{d} t \\& =\frac{1}{2}\left(\frac{-\cos 3 t}{3}-\cos t\right)+c \\& =-\frac{1}{6} \cos 3 t-\frac{1}{2} \cos t+c\end{aligned}

(b) Using the identity  2sinAsinB=cos(AB)cos(A+B)2 \sin A \sin B=\cos (A-B)-\cos (A+B),  we find

sinmtsinnt=12{cos(mn)tcos(m+n)t}\sin m t \sin n t=\frac{1}{2}\{\cos (m-n) t-\cos (m+n) t\}

Therefore,

sinmtsinnt dt=12{cos(mn)tcos(m+n)t}dt=12{sin(mn)tmnsin(m+n)tm+n}+c\begin{aligned}\int \sin m t \sin n t \mathrm{~d} t & =\int \frac{1}{2}\{\cos (m-n) t-\cos (m+n) t\} \mathrm{d} t \\& =\frac{1}{2}\left\{\frac{\sin (m-n) t}{m-n}-\frac{\sin (m+n) t}{m+n}\right\}+c\end{aligned}
Table 3.1
Common trigonometric identities.
tanA=sinAcosAsin(A±B)=sinAcosB±sinBcosAcos(A±B)=cosAcosBsinAsinBtan(A±B)=tanA±tanB1tanAtanB2sinAcosB=sin(A+B)+sin(AB)2cosAcosB=cos(A+B)+cos(AB)2sinAsinB=cos(AB)cos(A+B)sin2A+cos2A=11+cot2A=cosec2Atan2A+1=sec2Acos2A=12sin2A=2cos2A1=cos2Asin2Asin2A=2sin Acos Asin2A=1cos2A2cos2A=1+cos2A2\begin{aligned}& \tan A=\frac{\sin A}{\cos A} \\& \sin (A \pm B)=\sin A \cos B \pm \sin B \cos A \\& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) \\& \sin ^2 A+\cos ^2 A=1 \\& 1+\cot ^2 A=\operatorname{cosec^ 2} A \\& \tan ^2 A+1=\sec ^2 A \\& \cos 2 A=1-2 \sin ^2 A=2 \cos ^2 A-1=\cos ^2 A-\sin ^2 A \\& \sin 2 A=2 \sin  A \cos  A \\& \sin ^2 A=\frac{1-\cos 2 A}{2} \\& \cos ^2 A=\frac{1+\cos 2 A}{2}\end{aligned}
Note: sin2A\sin ^2 A  is the notation used for (sinA)2(\sin A)^2.  Similarly  cos2A\cos ^2 A  means (cosA)2(\cos A)^2.

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.5

Verified Answer:

Powers of trigonometric functions, for example  [l...
Question: 13.2

Verified Answer:

From Table 10.1 we find \frac{\mathrm{d}}{\...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...