Question 11.4: Find a closed-form expression for the output y(n) of the sys......

Find a closed-form expression for the output y(n) of the system, described by the state-space model given in Example 11.1, using the time-domain method, with the initial conditions y(1) = 2 and y(2) = 3 and the input u(n), the unit-step function.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The initial state vector was determined, from the given initial output conditions, in Example 11.2 as

q_{1}(0)=\frac{17}{3},\quad q_{2}(0)=\frac{16}{3}

The characteristic values, as determined in Example 11.3, are

\lambda_{1}=1+j\sqrt{2}\quad\mathrm{and}\quad\lambda_{2}=1-j\sqrt{2}

The transition matrix is given by

A^{n}=c_{0}I+c_{1}A

=c_{0}\left[{1 \ \ 0\atop0 \ \ 1}\right]+c_{1}\left[{2 \ -3}\atop1 \ \ \ \ 0\right]=\left [ \begin{matrix} c_{0}&+2c_{1}&-3c_{1} \\ &c_1&c_0\end{matrix} \right ]

where

{\left[\begin{array}{l}{c_{0}}\\ {c_{1}}\end{array}\right]}={\left[\begin{array}{l}{1\lambda_{1}}\\ {1\lambda_{2}}\end{array}\right]}^{-1}{\left[\begin{array}{l}{\lambda_{1}^{n}}\\ {\lambda_{2}^{n}}\end{array}\right]}

=\frac{j}{2\sqrt{2}}\left [ \begin{matrix} 1-j\sqrt{2}-1-j\sqrt{2} \\ \ -1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \end{matrix} \right ] \left [ \begin{matrix} (1+j{\sqrt{2}})^{n} \\ (1-j{\sqrt{2}})^{n} \end{matrix} \right ]

=\frac{j}{2\sqrt{2} } \left [ \begin{matrix}(1-j{\sqrt{2}})(1+j{\sqrt{2}})^{n}+(-1-j{\sqrt{2}})(1-j{\sqrt{2}})^{n} \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad -(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n} \end{matrix} \right ]

A^{n}={\frac{j}{2{\sqrt{2}}}} \left [ \begin{matrix} -(1+j{\sqrt{2}})^{(n+1)}+(1-j{\sqrt{2}})^{(n+1)}\qquad\qquad3(1+j{\sqrt{2}})^{n}-3(1-j{\sqrt{2}})^{n}\\ -(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n}\ 3(1+j{\sqrt{2}})^{(n-1)}-3(1-j{\sqrt{2}})^{(n-1)} \end{matrix} \right ]

As a check on A^{n}, verify that A^{n} = I with n = 0 and A^{n} = A with n = 1.

The zero-input component of the state vector is

q_{z i}(n)=A^{n}q(0)={\frac{j}{6{\sqrt{2}}}}\left [ \begin{matrix} (31-j17\sqrt2)(1+j\sqrt2)^{n}-(31+j17\sqrt2)(1-j\sqrt2)^{n} \\ (-1-j16{\sqrt{2}})(1+j{\sqrt{2}})^{n}+(1-j16{\sqrt{2}})(1-j{\sqrt{2}})^{n} \end{matrix} \right ]

Using the fact that the sum a complex number and its conjugate is twice the real part of either of the numbers, we get

q_{z i}(n)=\left [ \begin{matrix} {\frac{17}{3}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)-{\frac{31}{3{\sqrt{2}}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)) \\ {\textstyle\frac{16}{3}}({\sqrt3})^{n}\cos(\tan^{-1}({\sqrt2})n)+{\textstyle\frac{1}{3{\sqrt2}}}({\sqrt3})^{n}\sin(\tan^{-1}({\sqrt2})n)) \end{matrix} \right ]

The zero-input response y_{z i}\left(n\right) is given by

C A^{n}q(0)={\left[1-2\right]} \left [ \begin{matrix} {\textstyle\frac{17}{3}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)-{\textstyle\frac{31}{3{\sqrt{2}}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)) \\ {\textstyle\frac{16}{3}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+{\textstyle\frac{1}{3\sqrt{2}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)) \end{matrix} \right ]

=(-5(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)-\frac{11}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n))u(n)

The first four values of the zero-input response y_{z i}(n) are

y_{z i}(0)=-5,\quad y_{z i}(1)=-16,\quad y_{z i}(2)=-17,\quad y_{z i}(3)=14

The zero-state component of the state vector is

q_{z s}(n)=\sum_{m=0}^{n-1}A^{n-1-m}B x(m)

The convolution-summation, A^{n-1}u(n-1)*B x(n), can be evaluated, using the shift theorem of convolution (Chap. 4), by evaluating A^{n}u(n)*B x(n) first and then replacing n by n 1.

B(x)=\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] u(n)=\left [ \begin{matrix} u(n) \\ 0 \end{matrix} \right ]

A^n ∗ Bx(n) =\frac{j}{2\sqrt{2} }\left [ \begin{matrix} (-(1+j{\sqrt{2}})^{(n+1)}+(1-j{\sqrt{2}})^{(n+1)})*u(n) \\ \ \ \ \ \ \ \ \ \ \ \ \ (-(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n})*u(n) \end{matrix} \right ]

Since the first operand of the convolutions is the sum of two complex conjugate expressions and the convolution of p(n) and u(n) is equivalent to the sum of the first n + 1 values of p(n), we get

A^{n}*B x(n)

 

=\left [ \begin{matrix}2\;\mathrm{Re}\;\left\{\left(-\frac12-\frac j{2\sqrt2}\right)\sum_{m=0}^{n}(1+j\sqrt2)^{m}\right\} \\ \\ 2Re\ \bigg\{\Big(-\frac{j}{2\sqrt{2}}\Big)\sum_{m=0}^{n}(1+j\sqrt{2})^{m}\bigg\}\end{matrix} \right ]

 

=\left [ \begin{matrix} 2\ \mathrm{Re}\ \left\{\left({\frac{1}{2}}-{\frac{j}{2{\sqrt{2}}}}\right)\left({\frac{1-(1+j{\sqrt{2}})^{n+1}}{1-(1+j{\sqrt{2}})}}\right)\right\} \\ \\ 2\;\mathrm{Re}\;\left\{\left(-\frac{j}{2\sqrt{2}}\right)\left(\frac{1-(1+j\sqrt{2})^{n+1}}{1-(1+j\sqrt{2})}\right)\right\} \end{matrix} \right ]

 

=\left [ \begin{matrix} \textstyle{\frac{1}{2}}-{\frac{1}{2}}(\sqrt{3})^{(n+1)}\cos(\tan^{-1}(\sqrt{2})(n+1))+{\frac{1}{\sqrt{2}}}(\sqrt{3})^{(n+1)}\sin(\tan^{-1}(\sqrt{2})(n+1)) \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \quad \quad \quad \quad{\textstyle\frac{1}{2}}-{\textstyle\frac{1}{2}}({\sqrt{3}})^{(n+1)}\cos(\tan^{-1}({\sqrt{2}})(n+1)) \end{matrix} \right ]

Replacing n = n 1, we get

q_{z s}(n)=A^{n-1}*B x(n)

 

=\left [ \begin{matrix} \textstyle{\frac{1}{2}}-{\frac{1}{2}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+{\frac{1}{\sqrt{2}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n) \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad \quad \quad \quad \quad{\textstyle\frac{1}{2}}-{\textstyle\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})) \end{matrix} \right ]

The zero-state response is given by multiplying the state vector with the C vector and adding the input signal as

y_{z s}(n)=

 

\left [ \begin{matrix} 1 & -2 \end{matrix} \right ] \left [ \begin{matrix} {\frac{1}{2}}-{\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)+{\frac{1}{\sqrt{2}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)\, \\ \quad \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\frac{1}{2}}^{}-{\frac{1}{2}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})) \end{matrix} \right ] u(n − 1)+ 2u(n)

 

=\left(-\frac{1}{2}+\frac{1}{2}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+\frac{1}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)\right)u(n-1)+2u(n)

 

=\left(1.5+{\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)+{\frac{1}{{\sqrt{2}}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)\right)u(n)

The first four values of the zero-state response y_{zs}(n) are

y_{z s}(0)=2,\quad y_{z s}(1)=3,\quad y_{z s}(2)=3,\quad y_{z s}(3)=0

Adding the zero-input and the zero-state components, we get the total response of the system as

y(n)\,=\,1.5-4.5(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)

-\,\frac{10}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n),\quad n=0,1,2,…

The first four values of the total response y(n) are

y(0)=-3,\quad y(1)=-13,\quad y(2)=-14,\quad y(3)=14

Annotation 2023-06-10 074053

Related Answered Questions