Find a closed-form expression for the output y(n) of the system, described by the state-space model given in Example 11.1, using the time-domain method, with the initial conditions y(–1) = 2 and y(–2) = 3 and the input u(n), the unit-step function.
The initial state vector was determined, from the given initial output conditions, in Example 11.2 as
q_{1}(0)=\frac{17}{3},\quad q_{2}(0)=\frac{16}{3}
The characteristic values, as determined in Example 11.3, are
\lambda_{1}=1+j\sqrt{2}\quad\mathrm{and}\quad\lambda_{2}=1-j\sqrt{2}
The transition matrix is given by
A^{n}=c_{0}I+c_{1}A
=c_{0}\left[{1 \ \ 0\atop0 \ \ 1}\right]+c_{1}\left[{2 \ -3}\atop1 \ \ \ \ 0\right]=\left [ \begin{matrix} c_{0}&+2c_{1}&-3c_{1} \\ &c_1&c_0\end{matrix} \right ]
where
{\left[\begin{array}{l}{c_{0}}\\ {c_{1}}\end{array}\right]}={\left[\begin{array}{l}{1\lambda_{1}}\\ {1\lambda_{2}}\end{array}\right]}^{-1}{\left[\begin{array}{l}{\lambda_{1}^{n}}\\ {\lambda_{2}^{n}}\end{array}\right]}
=\frac{j}{2\sqrt{2}}\left [ \begin{matrix} 1-j\sqrt{2}-1-j\sqrt{2} \\ \ -1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \end{matrix} \right ] \left [ \begin{matrix} (1+j{\sqrt{2}})^{n} \\ (1-j{\sqrt{2}})^{n} \end{matrix} \right ]
=\frac{j}{2\sqrt{2} } \left [ \begin{matrix}(1-j{\sqrt{2}})(1+j{\sqrt{2}})^{n}+(-1-j{\sqrt{2}})(1-j{\sqrt{2}})^{n} \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad -(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n} \end{matrix} \right ]
A^{n}={\frac{j}{2{\sqrt{2}}}} \left [ \begin{matrix} -(1+j{\sqrt{2}})^{(n+1)}+(1-j{\sqrt{2}})^{(n+1)}\qquad\qquad3(1+j{\sqrt{2}})^{n}-3(1-j{\sqrt{2}})^{n}\\ -(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n}\ 3(1+j{\sqrt{2}})^{(n-1)}-3(1-j{\sqrt{2}})^{(n-1)} \end{matrix} \right ]
As a check on A^{n}, verify that A^{n} = I with n = 0 and A^{n} = A with n = 1.
The zero-input component of the state vector is
q_{z i}(n)=A^{n}q(0)={\frac{j}{6{\sqrt{2}}}}\left [ \begin{matrix} (31-j17\sqrt2)(1+j\sqrt2)^{n}-(31+j17\sqrt2)(1-j\sqrt2)^{n} \\ (-1-j16{\sqrt{2}})(1+j{\sqrt{2}})^{n}+(1-j16{\sqrt{2}})(1-j{\sqrt{2}})^{n} \end{matrix} \right ]
Using the fact that the sum a complex number and its conjugate is twice the real part of either of the numbers, we get
q_{z i}(n)=\left [ \begin{matrix} {\frac{17}{3}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)-{\frac{31}{3{\sqrt{2}}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)) \\ {\textstyle\frac{16}{3}}({\sqrt3})^{n}\cos(\tan^{-1}({\sqrt2})n)+{\textstyle\frac{1}{3{\sqrt2}}}({\sqrt3})^{n}\sin(\tan^{-1}({\sqrt2})n)) \end{matrix} \right ]
The zero-input response y_{z i}\left(n\right) is given by
C A^{n}q(0)={\left[1-2\right]} \left [ \begin{matrix} {\textstyle\frac{17}{3}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)-{\textstyle\frac{31}{3{\sqrt{2}}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)) \\ {\textstyle\frac{16}{3}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+{\textstyle\frac{1}{3\sqrt{2}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)) \end{matrix} \right ]
=(-5(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)-\frac{11}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n))u(n)
The first four values of the zero-input response y_{z i}(n) are
y_{z i}(0)=-5,\quad y_{z i}(1)=-16,\quad y_{z i}(2)=-17,\quad y_{z i}(3)=14
The zero-state component of the state vector is
q_{z s}(n)=\sum_{m=0}^{n-1}A^{n-1-m}B x(m)
The convolution-summation, A^{n-1}u(n-1)*B x(n), can be evaluated, using the shift theorem of convolution (Chap. 4), by evaluating A^{n}u(n)*B x(n) first and then replacing n by n – 1.
B(x)=\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] u(n)=\left [ \begin{matrix} u(n) \\ 0 \end{matrix} \right ]
A^n ∗ Bx(n) =\frac{j}{2\sqrt{2} }\left [ \begin{matrix} (-(1+j{\sqrt{2}})^{(n+1)}+(1-j{\sqrt{2}})^{(n+1)})*u(n) \\ \ \ \ \ \ \ \ \ \ \ \ \ (-(1+j{\sqrt{2}})^{n}+(1-j{\sqrt{2}})^{n})*u(n) \end{matrix} \right ]
Since the first operand of the convolutions is the sum of two complex conjugate expressions and the convolution of p(n) and u(n) is equivalent to the sum of the first n + 1 values of p(n), we get
A^{n}*B x(n)=\left [ \begin{matrix}2\;\mathrm{Re}\;\left\{\left(-\frac12-\frac j{2\sqrt2}\right)\sum_{m=0}^{n}(1+j\sqrt2)^{m}\right\} \\ \\ 2Re\ \bigg\{\Big(-\frac{j}{2\sqrt{2}}\Big)\sum_{m=0}^{n}(1+j\sqrt{2})^{m}\bigg\}\end{matrix} \right ]
=\left [ \begin{matrix} 2\ \mathrm{Re}\ \left\{\left({\frac{1}{2}}-{\frac{j}{2{\sqrt{2}}}}\right)\left({\frac{1-(1+j{\sqrt{2}})^{n+1}}{1-(1+j{\sqrt{2}})}}\right)\right\} \\ \\ 2\;\mathrm{Re}\;\left\{\left(-\frac{j}{2\sqrt{2}}\right)\left(\frac{1-(1+j\sqrt{2})^{n+1}}{1-(1+j\sqrt{2})}\right)\right\} \end{matrix} \right ]
=\left [ \begin{matrix} \textstyle{\frac{1}{2}}-{\frac{1}{2}}(\sqrt{3})^{(n+1)}\cos(\tan^{-1}(\sqrt{2})(n+1))+{\frac{1}{\sqrt{2}}}(\sqrt{3})^{(n+1)}\sin(\tan^{-1}(\sqrt{2})(n+1)) \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \quad \quad \quad \quad{\textstyle\frac{1}{2}}-{\textstyle\frac{1}{2}}({\sqrt{3}})^{(n+1)}\cos(\tan^{-1}({\sqrt{2}})(n+1)) \end{matrix} \right ]
Replacing n = n – 1, we get
q_{z s}(n)=A^{n-1}*B x(n)=\left [ \begin{matrix} \textstyle{\frac{1}{2}}-{\frac{1}{2}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+{\frac{1}{\sqrt{2}}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n) \\ \quad\quad\quad\quad\quad\quad\quad\quad\quad \quad \quad \quad \quad{\textstyle\frac{1}{2}}-{\textstyle\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})) \end{matrix} \right ]
The zero-state response is given by multiplying the state vector with the C vector and adding the input signal as
y_{z s}(n)=\left [ \begin{matrix} 1 & -2 \end{matrix} \right ] \left [ \begin{matrix} {\frac{1}{2}}-{\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)+{\frac{1}{\sqrt{2}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)\, \\ \quad \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\frac{1}{2}}^{}-{\frac{1}{2}}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})) \end{matrix} \right ] u(n − 1)+ 2u(n)
=\left(-\frac{1}{2}+\frac{1}{2}(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)+\frac{1}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n)\right)u(n-1)+2u(n)
=\left(1.5+{\frac{1}{2}}({\sqrt{3}})^{n}\cos(\tan^{-1}({\sqrt{2}})n)+{\frac{1}{{\sqrt{2}}}}({\sqrt{3}})^{n}\sin(\tan^{-1}({\sqrt{2}})n)\right)u(n)
The first four values of the zero-state response y_{zs}(n) are
y_{z s}(0)=2,\quad y_{z s}(1)=3,\quad y_{z s}(2)=3,\quad y_{z s}(3)=0
Adding the zero-input and the zero-state components, we get the total response of the system as
y(n)\,=\,1.5-4.5(\sqrt{3})^{n}\cos(\tan^{-1}(\sqrt{2})n)
-\,\frac{10}{\sqrt{2}}(\sqrt{3})^{n}\sin(\tan^{-1}(\sqrt{2})n),\quad n=0,1,2,…
The first four values of the total response y(n) are
y(0)=-3,\quad y(1)=-13,\quad y(2)=-14,\quad y(3)=14