Question 13.2: Find  d / dx (x^n+1 / n + 1 + c) and hence deduce that  ∫ x^......

Find  \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}+c\right)  and hence deduce that   \int x^n \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Table 10.1 we find

\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}+c\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{n+1}}{n+1}\right)+\frac{\mathrm{d}}{\mathrm{d} x}(c) \quad \begin{aligned}& \text { using the linearity } \\& \text { of differentiation }\end{aligned}

=\frac{1}{n+1} \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n+1}\right)+\frac{\mathrm{d}}{\mathrm{d} x}(c) \quad \begin{aligned}& \text { again using the } \\& \text { linearity of differentiation }\end{aligned}

\begin{aligned}& =\frac{1}{n+1}\left\{(n+1) x^n\right\}+0 \quad \text { using Table } 10.1 \\& =x^n\end{aligned}

Consequently, reversing the process we find

\int x^n \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c

as required. Note that this result is invalid if n = −1 and so this result could not be applied to the integral  \int(1 / x) d x.

Table 10.1
Derivatives of commonly used functions.
Function, y(x) Derivative, y′ Function, y(x) Derivative, y′
constant 0 \cos ^{-1}(a x+b) \frac{-a}{\sqrt{1-(a x+b)^2}}
x^n n x^{n-1}
\mathrm{e}^x \mathrm{e}^x \tan ^{-1}(a x+b) \frac{a}{1+(a x+b)^2}
\mathrm{e}^{-x} -\mathrm{e}^{-x}
\mathrm{e}^{a x} a \mathrm{e}^{a x} \sinh (a x+b) a \cosh (a x+b)
\cosh (a x+b) a \sinh (a x+b)
\ln x \frac{1}{x} \tanh (a x+b) a \operatorname{sech}^2(a x+b)
\sin x \cos x \operatorname{cosech}(a x+b) -a \operatorname{cosech}(a x+b) \times
\cos x -\sin x \operatorname{coth}(a x+b)
\sin (a x+b) a \cos (a x+b) \operatorname{sech}(a x+b) -a \operatorname{sech}(a x+b) \times
\cos (a x+b) -a \sin (a x+b) \tanh (a x+b)
\tan (a x+b) a \sec ^2(a x+b) \operatorname{coth}(a x+b) -a \operatorname{cosech}^2(a x+b)
\operatorname{cosec}(a x+b) -a \operatorname{cosec}(a x+b) \cot (a x+b) \sinh ^{-1}(a x+b) \frac{a}{\sqrt{(a x+b)^2+1}}
\sec (a x+b) a \sec (a x+b) \tan (a x+b) \frac{a}{\sqrt{(a x+b)^2-1}}
\cot (a x+b) -a \operatorname{cosec}^2(a x+b) \cosh ^{-1}(a x+b) \frac{a}{\sqrt{(a x+b)^2-1}}
\sin ^{-1}(a x+b) \frac{a}{\sqrt{1-(a x+b)^2}} \tanh ^{-1}(a x+b) \frac{a}{1-(a x+b)^2}

Related Answered Questions

Question: 13.11

Verified Answer:

Figure 13.13 illustrates the required area. From t...
Question: 13.9

Verified Answer:

Figure 13.11 illustrates the required area. [latex...
Question: 13.8

Verified Answer:

\begin{aligned}\text { Area } & =\int_1...
Question: 13.7

Verified Answer:

(a) Let I stand for  \int_1^2 x^2+1 d x[/la...
Question: 13.6

Verified Answer:

(a) Using the identities in Table 3.1 we find [lat...
Question: 13.5

Verified Answer:

Powers of trigonometric functions, for example  [l...
Question: 13.1

Verified Answer:

We need to find a function which, when differentia...