Find dy/dx when:
(\mathbf{a})~~y=u^{5}{~\mathrm{and}~u}=1-x^{3}~~~~~~~~~~~~~~~~(\mathbf{b})~~y=\frac{10}{(x^{2}+4x+5)^{7}}(a) Here we can use (6.8.1) directly. Since dy/du = 5u^{4} and du/dx = −3x^{2}, we have
{\frac{\mathrm{d}y}{\mathrm{d}x}}={\frac{\mathrm{d}y}{\mathrm{d}u}}\cdot{\frac{\mathrm{d}u}{\mathrm{d}x}}=5u^{4}(-3x^{2})=-15x^{2}u^{4}=-15x^{2}(1-x^{3})^{4}(b) If we write u = x^{2} + 4x + 5, then y = 10u^{−7}. By the generalized power rule (6.8.2), one has
y^{\prime}=a u^{a-1}u^{\prime} (6.8.2)
{\frac{\mathrm{d}y}{\mathrm{d}x}}=10(-7)u^{-8}u^{\prime}=-70u^{-8}(2x+4)={\frac{-140(x+2)}{(x^{2}+4x+5)^{8}}}