Find the derivative of the compound function F(x) = f (g(x)) at x0=−3 in case f (u) = u³ and g(x) = 2 − x².
In this case one has f′(u)=3u2 and g′(x)=−2x. So according to (6.8.3),
F′(x0)=f′(u0)g′(x0)=f′(g(x0))g′(x0) (6.8.3)
one has F′(−3)=f′(g(−3))g′(−3). Now g(−3) = 2 − (−3)² = 2 − 9 = −7; g′(−3)=6; and f′(g(−3))=f′(−7)=3(−7)2=3⋅49=147. So F′(−3)=f′(g(−3))g′(−3)=147⋅6=882.