Question 8.8.2: Find the eigenvalues and eigenvectors of A = (1 2 1 6 -1 0 -......

Find the eigenvalues and eigenvectors of

A=(121610121) \mathrm{A}=\left(\begin{array}{rrr} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{array}\right) .     (5)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

To expand the determinant in the characteristic equation

det(AλI)=1λ2161λ0121λ=0, \operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=\left|\begin{array}{ccc} 1-\lambda & 2 & 1 \\ 6 & -1-\lambda & 0 \\ -1 & -2 & -1-\lambda \end{array}\right|=0,

we use the cofactors of the second row. It follows that the characteristic equation is

λ3λ2+12λ=0 or λ(λ+4)(λ3)=0-\lambda^{3}-\lambda^{2}+12 \lambda=0 \quad \text { or } \quad \lambda(\lambda+4)(\lambda-3)=0

Hence the eigenvalues are λ1=0,λ2=4,λ3=3\lambda_{1}=0, \lambda_{2}=-4, \lambda_{3}=3. To find the eigenvectors, we must now reduce (AλI0)(\mathrm{A}-\lambda \mathrm{I} \mid \mathrm{0}) three times corresponding to the three distinct eigenvalues.

For λ1=0\lambda_{1}=0, we have

(A0I0)=(121061001210)R1+R36R1+R2(1210013600000)113R2(12100161300000)2R2+R1(1011300161300000). \begin{aligned} (\mathrm{A}-0 \mathrm{I} \mid \mathrm{0})= & \left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 6 & -1 & 0 & 0 \\ -1 & -2 & -1 & 0 \end{array}\right) \stackrel{-6 R_{1}+R_{2}}{\stackrel{R_{1}+R_{3}}{\Rightarrow}}\left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 0 & -13 & -6 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \\ & \stackrel{-\frac{1}{13} R_{2}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{6}{13} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \stackrel{-2 R_{2}+R_{1}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 0 & \frac{1}{13} & 0 \\ 0 & 1 & \frac{6}{13} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) . \end{aligned}

Thus we see that k1=113k3k_{1}=-\frac{1}{13} k_{3} and k2=613k3k_{2}=-\frac{6}{13} k_{3}. Choosing k3=13k_{3}=-13 gives the eigenvector

K1=(1613). \mathrm{K}_{1}=\left(\begin{array}{r} 1 \\ 6 \\ -13 \end{array}\right).

For λ2=4\lambda_{2}=-4,

(A+4I0)=(521063001230)R3R1R3(123063005210) (\mathrm{A}+4 \mathrm{I} \mid \mathrm{0})=\left(\begin{array}{rrr|r} 5 & 2 & 1 & 0 \\ 6 & 3 & 0 & 0 \\ -1 & -2 & 3 & 0 \end{array}\right) \stackrel{\substack{-R_{3} \\ R_{1} \leftrightarrow R_{3}}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & -3 & 0 \\ 6 & 3 & 0 & 0 \\ 5 & 2 & 1 & 0 \end{array}\right)

6R1+R25R1+R3(12300918008160)19R218R3(123001200120)R2+R32R2+R1(101001200000) \begin{aligned} & \stackrel{\substack{-6 R_{1}+R_{2} \\ -5 R_{1}+R_{3}}}{\Rightarrow}\left(\begin{array}{rrr|r} 1 & 2 & -3 & 0 \\ 0 & -9 & 18 & 0 \\ 0 & -8 & 16 & 0 \end{array}\right) \stackrel{\substack{-\frac{1}{9} R_{2} \\ -\frac{1}{8} R_{3}}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 2 & -3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \end{array}\right) \\ & \underset{\Rightarrow}{\stackrel{-2 R_{2}+R_{1}}{-R_{2}+R_{3}}}\left(\begin{array}{rrr|r} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \end{aligned}

implies k1=k3k_{1}=-k_{3} and k2=2k3k_{2}=2 k_{3}. Choosing k3=1k_{3}=1 then yields a second eigenvector

K2=(121). \mathrm{K}_{2}=\left(\begin{array}{r} -1 \\ 2 \\ 1 \end{array}\right).

Finally, for λ3=3\lambda_{3}=3, Gauss-Jordan elimination gives

(A3I0)=(221064001240) row  operations (1010013200000), (\mathrm{A}-3 \mathrm{I} \mid \mathrm{0})=\left(\begin{array}{rrr|r} -2 & 2 & 1 & 0 \\ 6 & -4 & 0 & 0 \\ -1 & -2 & -4 & 0 \end{array}\right) \stackrel{\substack{\text { row } \\ \text { operations }}}{\Rightarrow}\left(\begin{array}{lll|l} 1 & 0 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right),

and so k1=k3k_{1}=-k_{3} and k2=32k3k_{2}=-\frac{3}{2} k_{3}. The choice of k3=2k_{3}=-2 leads to a third eigenvector,

K3=(232). \mathrm{K}_{3}=\left(\begin{array}{r} 2 \\ 3 \\ -2 \end{array}\right).

Related Answered Questions

Question: 8.6.7

Verified Answer:

We found the inverse of the coefficient matrix [l...
Question: 8.2.5

Verified Answer:

(a) Using row operations on the augmented matrix o...
Question: 8.2.2

Verified Answer:

We begin by interchanging the first and second row...
Question: 8.9.1

Verified Answer:

The characteristic equation of \mathrm{A}[/...
Question: 8.8.5

Verified Answer:

The characteristic equation is \operatorna...
Question: 8.8.4

Verified Answer:

The characteristic equation \operatorname{...
Question: 8.8.3

Verified Answer:

From the characteristic equation \operator...
Question: 8.8.1

Verified Answer:

By carrying out the multiplication AK we see [late...
Question: 8.7.1

Verified Answer:

The solution requires the evaluation of four deter...
Question: 8.6.6

Verified Answer:

The given system can be written as \left(\...