To expand the determinant in the characteristic equation
det(A−λI)=∣∣∣∣∣∣∣1−λ6−12−1−λ−210−1−λ∣∣∣∣∣∣∣=0,
we use the cofactors of the second row. It follows that the characteristic equation is
−λ3−λ2+12λ=0 or λ(λ+4)(λ−3)=0
Hence the eigenvalues are λ1=0,λ2=−4,λ3=3. To find the eigenvectors, we must now reduce (A−λI∣0) three times corresponding to the three distinct eigenvalues.
For λ1=0, we have
(A−0I∣0)=⎝⎜⎛16−12−1−210−1000⎠⎟⎞⇒R1+R3−6R1+R2⎝⎜⎛1002−1301−60000⎠⎟⎞⇒−131R2⎝⎜⎛10021011360000⎠⎟⎞⇒−2R2+R1⎝⎜⎛1000101311360000⎠⎟⎞.
Thus we see that k1=−131k3 and k2=−136k3. Choosing k3=−13 gives the eigenvector
K1=⎝⎜⎛16−13⎠⎟⎞.
For λ2=−4,
(A+4I∣0)=⎝⎜⎛56−123−2103000⎠⎟⎞⇒−R3R1↔R3⎝⎜⎛165232−301000⎠⎟⎞
⇒−6R1+R2−5R1+R3⎝⎜⎛1002−9−8−31816000⎠⎟⎞⇒−91R2−81R3⎝⎜⎛100211−3−2−2000⎠⎟⎞⇒−R2+R3−2R2+R1⎝⎜⎛1000101−20000⎠⎟⎞
implies k1=−k3 and k2=2k3. Choosing k3=1 then yields a second eigenvector
K2=⎝⎜⎛−121⎠⎟⎞.
Finally, for λ3=3, Gauss-Jordan elimination gives
(A−3I∣0)=⎝⎜⎛−26−12−4−210−4000⎠⎟⎞⇒ row operations ⎝⎜⎛1000101230000⎠⎟⎞,
and so k1=−k3 and k2=−23k3. The choice of k3=−2 leads to a third eigenvector,
K3=⎝⎜⎛23−2⎠⎟⎞.