Find the maximum and minimum values of the inductor current for the buck converter of Problem 10.2 if the duty cycle D = 0.6 and V_1 = 24 \text{V}.
Since D = 0.6 \gt D_{\mathrm{min}} = 0.4286, continuous inductor current is assured. Also, by (10.5),
G_{V} = {\frac{V_{2}}{V_{1}}} = D (10.5)
V_{2} = D V_{1} = 0.6(24) =14.4\,\mathrm{V}
By (5) and (6) of Problem 10.6,
I_{\mathrm{max}} = {\frac{V_{2}}{R_{L}}} + {\frac{(V_{1} – V_{2})D}{2f_{s}L}} = {\frac{14.4}{7}} + {\frac{(24 – 14.4)(0.6)}{2(30 \times 10^{3})(50 \times 10^{-6})}} = 3.977\,\mathrm{A}
I_{\mathrm{min}} = {\frac{V_{2}}{R_{L}}} – {\frac{(V_{1} – V_{2})D}{2f_{s}L}} = {\frac{14.4}{7}} – {\frac{(24 – 14.4)(0.6)}{2(30 \times 10^{3})(50 \times 10^{-6})}} = 0.137\,\mathrm{A}