Question 5.27: Find the mutual reactance Xm in the coupled coils shown in F......

Find the mutual reactance \text{X}_m in the coupled coils shown in Fig. 1, if the average power in 8 Ω resistance is 100 W.

01
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let us assume two mesh currents \bar{I}_1 \text { and } \bar{I}_2 as shown in Fig. 2. Now the current enters at the dotted end in one coil and leaves at the dotted end in the other coil. So the fluxes are opposing. Also, the mesh currents are in the same orientation. Hence, it is group-1 coupled coil. The electrical equivalent of the coupled circuit is shown in Fig. 3.

With reference to Fig. 3, the mesh basis matrix equation is,

\left[\begin{array}{rr} 5+j 5-j X_m+j X_m & -j X_m \\ -j X_m & j X_m+j 12-j X_m+8 \end{array}\right]\left[\begin{array}{r} \bar{I}_1 \\ \bar{I}_2 \end{array}\right]=\left[\begin{array}{r} 100 \angle 0^{\circ} \\ 0 \end{array}\right]

\left[\begin{array}{cr} 5+ j 5 & – j X _{ m } \\ – j X _{ m } & 8+ j 12 \end{array}\right]\left[\begin{array}{l} \overline{ I }_1 \\ \overline{ I }_2 \end{array}\right]=\left[\begin{array}{r} 100 \\ 0 \end{array}\right]

\text { Now, } \Delta=\left|\begin{array}{ll} 5+j 5 & -j X_m \\ -j X_m & 8+j 12 \end{array}\right|=(5+j 5) \times(8+j 12)-\left(-j X_m\right)^2

=-20+j 100+X_m^2=X_m^2-20+j 100

\Delta_2=\left|\begin{array}{lr} 5+j 5 & 100 \\ -j X_m & 0 \end{array}\right|=0-\left(-j X_m\right) \times 100=j 100 X_m

\text { Now, } \overline{ I }_2=\frac{\Delta_2}{\Delta}=\frac{ j 100 X _{ m }}{ X _{ m }^2-20+ j 100}                       …..(1)

Given that,
Power in 8 Ω resistance = 100 W

Here, Power in 8 Ω resistance =\left|\overline{ I }_2\right|^2 \times 8

\therefore\left|\bar{I}_2\right|^2 \times 8=100

Using equation (1)

\left|\frac{j 100 X_m}{X_m^2-20+j 100}\right|^2 \times 8=100

\left(\frac{100 X_m}{\sqrt{\left(X_m^2-20\right)^2+100^2}}\right)^2 \times 8=100 \Rightarrow \frac{80000 X_m^2}{\left(X_m^2-20\right)^2+100^2}=100

\therefore\left( X _{ m }^2-20\right)^2+100^2=\frac{80000 X _{ m }^2}{100} \Rightarrow X _{ m }^4+400-40 X _{ m }^2+10000=800 X _{ m }^2

\therefore X _{ m }^4-40 X _{ m }^2-800 X _{ m }^2+10400=0 \Rightarrow X _{ m }^4-840 X _{ m }^2+10400=0

\text { Let, } X_m^2=X \text { Now, } X^2-840 X+10400=0

The roots of the quadratic are,

\begin{aligned} X & =\frac{-(-840) \pm \sqrt{(-840)^2-4 \times 10400}}{2}=\frac{840 \pm 814.862}{2} \\ & =827.431 \text { or } 12.569 \end{aligned}

Let us take smaller value of X for realizability.

Now, \begin{aligned} & X_m^2=X \\ & \therefore X_m=\sqrt{X}=\sqrt{12.569}=3.5453 \Omega \end{aligned}

RESULT

\text { Mutual reactance, } X _{ m }=3.5453 \Omega
2.3

Related Answered Questions

Question: 5.22

Verified Answer:

a) To find the equivalent inductance of series-con...
Question: 5.23

Verified Answer:

Let current through the parallel branches be [late...
Question: 5.24

Verified Answer:

Let us connect a sinusoidal voltage source of valu...
Question: 5.25

Verified Answer:

Let us assume the current through parallel arms as...
Question: 5.29

Verified Answer:

The current \overline{I}_p entering...